K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

\(P\left(x\right)=2x^2-4x+2012\\ =2x^2-4x+2+2010\\ =2\left(x^2-2x+1\right)+2010\\ =2\left(x-1\right)^2+2010\\ \left(x-1\right)^2\ge0\forall x\\ \Leftrightarrow2\left(x-1\right)^2\ge0\forall x\\ \Leftrightarrow2\left(x-1\right)^2+2010\ge2010\forall x\\ \text{Dấu }"="\text{ xảy ra khi }\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(Min_{P\left(x\right)}=2010\text{ khi }x=1\)

3 tháng 5 2022

`M = 2x^2 + 4x + 5`

`M = 2 ( x^2 + 2x + 5 /2 )`

`M = 2 ( x^2 + 2x + 1 + 3 / 2 )`

`M = 2 [ ( x + 1)^2 + 3 / 2 ]`

`M = 2 ( x + 1)^2 + 3`

   Vì `2( x+ 1)^2 >= 0`

   `=> 2 ( x + 1)^2 + 3 >= 3`

   Hay `M >= 3`

Dấu "`=`" xảy ra khi `( x + 1)^2 = 0`

                        `=> x + 1 = 0`

                        `=> x = -1`

Vậy GTNN của `M` là `3` khi `x = -1`

3 tháng 5 2022

\(M=2x^2+4x+5=2x^2+4x+2+3=2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3\ge3\)\(M_{min}=3\Leftrightarrow x=-1\)

5 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức : \(3\)

Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)

b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)

\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)

6 tháng 4 2019

B(x)=(2x)^2+2x+2x+1-6

=2x(2x+1)+(2x+1)-6

 =(2x+1)^2-6

Vì (2x+1)^2>=0 với mọi x

B(x) >= -6 với mọi x

Dấu = xảy ra <=> 2x+1=0

<=> x=-1/2

Vậy GTNN B(x) =-6 <=> x=-1/2

28 tháng 12 2015

\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)

=> GTLN của đa thức là 8

<=> x-2 = 0

<=> x = 2

\(x^2+y^2-x+6y+15\)

\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

=> GTNN của đa thức là 23/4

<=> x-1/2=0 và y+3=0

<=> x=1/2 và y=-3

6 tháng 10 2021

\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

22 tháng 6 2015

1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5

Do (x-2)2>0

=>-(x-2)2<0

=>P(x)=-(x-2)2+5<5

=>Max P=5<=>(x-2)2=0<=>x=2

2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14

=(x-2)2+(y-4)2-14

Do (x-2)2>0

(y-4)2>0

=>(x-2)2+(y-4)2>0

=>A(x)=(x-2)2+(y-4)2-14>-14

=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4

22 tháng 6 2015

P(x) = 4x - x^2 + 1

         = - ( x^2 - 4x + 10) 

       =  -( x^2 - 2.x.2 + 4 + 6)

       = -(  x- 2 )^2 - 6 

Vậy GTLN của p là -6 tại x  - 2 = 0 => x = 2 

VẬy x = 2 thì .... 

B2)

 A(x) = x^2 - 4x + y^2 - 8y + 6 

     = x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14

     =( x - 2)^2 + (y - 4)^2 - 14 

VẬy GTNN của bt là -14 

              khi x - 2 = 0 => x = 2 

                    y - 4= 0 => y=4 

15 tháng 11 2021

\(x^2-4x+25\)

\(=\left(x^2-4x+4\right)+21\)

\(=\left(x-2\right)^2+21\)

\(\ge21\)

Bé hơn hoặc bằng 21 nha

Xin k