K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Câu a) Nè

Áp dụng định lí Pythagoras vào tam giác ABC

Ta có: \(AB^2+AC^2=BC^2\)

Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC

Áp dụng tính chât đường cao của tam giác vuông

Ta có: \(AH\cdot BC=AB\cdot AC\)

Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)

Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

Vậy Kết luận 

~~~ Hết ~~~

Chụy là chanh đừng nhờn với chụy nha em.

Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết 

a: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}=\dfrac{BC^2}{\left(AB\cdot AC\right)^2}\)

\(\Leftrightarrow AH^2\cdot BC^2=AB^2\cdot AC^2\)

hay \(AH\cdot BC=AB\cdot AC\)(luôn đúng)

b: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vói ΔABC

b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)

AH=3*4/5=2,4cm

HB=4^2/5=3,2cm

c: FH/FA=BH/BA

EA/EC=BA/BC

BH/BA=BA/BC

=>FH/FA=EA/EC

15 tháng 4 2021

undefinedundefined

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

a: Xét ΔBAE vuông tại A và ΔBHD vuông tại H có

góc ABE=góc HBD

=>ΔBAE đồng dạng với ΔBHD

b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)

CK=BC-BK=16(cm)