cho tam giac ABC có góc A = 1200. Biết AB = 4 cm, AC = 6 cm. Tính độ dài đường trung tuyến AM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ BD vuông góc với AC tại D; AH vuông góc với BC tại H
 = 120 độ => BÂD = 60 độ.
AB = 4 => AD = 2; BD = 2sqrt3 => CD = 8
Pytago cho tam giác vuông BCD => BC = 2sqrt19.
Tam giác CHA đồng dạng với tam giác CDB (g.g)
=> CH : CD = CA : CB = AH : BD
Thay các số đã biết vào dãy tỉ số trên => CH = 24:(sqrt19); AH = 6(sqrt57) : 19
CM = 1/2BC = sqrt19
=> HM = CH - CM = 5:(sqrt19)
Pytago cho tam giác vuông AHM => AM = ...
Hạ BD vuông góc với AC tại D; AH vuông góc với BC tại H
 = 120 độ => BÂD = 60 độ.
AB = 4 => AD = 2; BD = 2sqrt3 => CD = 8
Pytago cho tam giác vuông BCD => BC = 2sqrt19.
Tam giác CHA đồng dạng với tam giác CDB (g.g)
=> CH : CD = CA : CB = AH : BD
Thay các số đã biết vào dãy tỉ số trên => CH = 24:(sqrt19); AH = 6(sqrt57) : 19
CM = 1/2BC = sqrt19
=> HM = CH - CM = 5:(sqrt19)
Pytago cho tam giác vuông AHM => AM =
:3
\(\Delta ABC\)có : AB2 + AC2 = (4,5)2 + 62 = 56,25 = (7,5)2 = BC2 nên\(\Delta ABC\)vuông tại A
=> Trung tuyến AM bằng nửa cạnh huyền BC và bằng : 7,5 : 2 = 3,75 (cm)
Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC
b) Tính AM biết rằng AB cm BC cm 10 , 12
Hạ MH và BK vuông AC,
Ta thấy MH là đường tr.bình t.g BCK.
Có góc BÂK =60 độ
nên KA =AB/2 =2
và BK =2.căn3
=> MH =BK/2 = căn3.
Mặt khác KC =KA +AC =8
=> KH =KC/2 =4
=> AH =2. T
a lại có AM2 =AH^2+HM^2 =4+3 =7
nên AM = √7
Áp dụng định lí Cos : \(BC=\sqrt{AB^2+AC^2-2AB.AC.cos\widehat{BAC}}=\sqrt{4^2+6^2-2.4.6.cos120^o}=2\sqrt{19}\) (cm)
\(AM=\sqrt{\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}}=...\)
2,65 ( làm tròn đến số thập phân số 2)
kết quả đúng mkf thử rồi
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath