Bài 8: Cho đoạn thẳng AB, M thuộc đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và BMD, AD giao MC tại E, BC giao MD tại F. Chứng minh:
a) Cho MA=a, MB=b. Tính ME, MF theo a,b
b) Tam giác MEF là tam giác gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 90 ° (vì hai góc ở vị trí đồng vị) => MD // AC
Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có M E E C = M D A C = b a
Suy ra
M E E C = b a ⇒ M E M E + E C = b b + a ⇒ M E a = b b + a ⇒ M E = a b b + a
Tương tự MF = b a a + b
Vậy M E = M F = a b b + a
Đáp án: B
1.
a) + ME // BD
\(\Rightarrow\dfrac{ME}{BD}=\dfrac{AM}{AB}=\dfrac{a}{a+b}\)
\(\Rightarrow\dfrac{ME}{b}=\dfrac{a}{a+b}\Rightarrow ME=\dfrac{ab}{a+b}\)
+ Tương tự : \(MF=\dfrac{ab}{a+b}\)
b) +ΔMEF có ME = MF, \(\widehat{EMF}=60^o\)
=> ΔMEF đều
2.
+ AB // CD \(\Rightarrow\dfrac{AE}{CF}=\dfrac{OE}{OF}\)
+ Tương tự : \(\dfrac{BE}{DF}=\dfrac{OE}{OF}\)
\(\Rightarrow\dfrac{BE}{DF}=\dfrac{AE}{CF}\) => DF = CF ( do AE = BE )
=> F là trung điểm của CD
Đặt MB = a => MA = 2a
Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 60 ° (hai góc ở vị trí đồng vị) => MD // AC
Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có
M E E C = M D A C = M B M A = 1 2
Suy ra:
M E E C = b a ⇒ M E M E + E C = 1 1 + 2 = 1 3 ⇒ M E 2 a = 1 3 ⇒ M E = 2 a 3
Tương tự MF = 2 a 3
Vậy M E = M F = 2 a 3
Đáp án: B
7)
a) ta có:
\(\widehat{AKE}=\widehat{BAD}\) (đồng vị và AD//KM)
\(\widehat{AEK}=\widehat{DAE}\) (so le trong và AD//KM)
\(\widehat{BAD}=\widehat{DAE}\) (AD là tia phân giác)
=> \(\widehat{AKE}=\widehat{AEK}\)
=> tam giác AKE cân tại A
=> AK=AE
b) Xét tam giác BKM ta có:
AD//KM(gt)
=> \(\dfrac{BK}{AK}=\dfrac{MB}{MD}\) (Đlý thales thuận)
Xét tam giác ADC ta có:
AD//EM(gt)
=> \(\dfrac{CE}{AE}=\dfrac{CM}{MD}\) (Đlý thales thuận)
Mà AE=AK(cmt)
CM=MB(M là trung điểm BC)
Nên \(\dfrac{CE}{AK}=\dfrac{MB}{MD}\)
Mà \(\dfrac{BK}{AK}=\dfrac{MB}{MD}\) (cmt)
Nên CE=AB
9) Xét tam giác ODF ta có:
DF//EB(tc hthang ABCD)
=> \(\dfrac{DF}{EB}=\dfrac{FO}{EO}\) (Hệ quả Thales)
Xét tam giác OCF ta có:
CF//EA(tc hthang ABCD)
=> \(\dfrac{FC}{AE}=\dfrac{FO}{EO}\) (Hệ quả Thales)
Mà \(\dfrac{DF}{EB}=\dfrac{FO}{EO}\) (cmt)
AE=EB(E là trung điểm AB)
Nên DF=FC
=> F là trung điểm DC
Ta có ME = MF => ΔEMF cân tại M
Ta có:
E M F ^ = 180 ° - C M A ^ - D M B ^ = 180 ° - 60 ° - 60 ° = 60 °
Từ đó MEF là tam giác cân có một góc bằng 60 ° nên nó là tam giác đều
Vậy EF = ME = MF = 2 a 3
Đáp án: A
Từ câu trước ta có ME = MF => ΔEMF cân tại M
Ta có A M C ^ + E M F ^ + D M B ^ = 180 ° mà C M A ^ = D M B ^ = 30 ° (tính chất tam giác đều)
Nên:
E M F ^ = 180 ° - M N A ^ - D M B ^ = 180 ° - 60 ° - 60 °
Từ đó MEF là tam giác cân có một góc bằng 60 ° nên nó là tam giác đều
Đáp án: A
a) Ta có:
\(\widehat{CMA}=\widehat{DBA}\left(=60^o\right)\)
Mà 2 góc nằm ở vị trí đồng vị
=> EM//BD
Xét tam giác ABD ta có:
EM//BD(cmt)
=> \(\dfrac{EM}{BD}=\dfrac{AM}{AB}\Rightarrow\dfrac{EM}{b}=\dfrac{a}{ab}\Rightarrow EM=1\)
Cmtt: \(\dfrac{FM}{AC}=\dfrac{BM}{AB}\Rightarrow\dfrac{FM}{b}=\dfrac{a}{ab}\Rightarrow FM=1\)
b) Ta có:
FM=EM(=1)
=> tam giác EMF cân tại M
Ta có:
\(\widehat{CMA}+\widehat{EMF}+\widehat{DMB}=180^o\)
\(60^o+\widehat{EMF}+60^o=180^o\)
\(\widehat{EMF}=60^o\)
Xét tam giác EMF cân tại M ta có:
\(\widehat{EMF}=60^o\) (cmt)
=> tam giác EMF đều