K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

*Ta có \(\cos^2a+\sin^2a=1\)

\(\Rightarrow sina=\sqrt{1-\cos^2a}=\sqrt{1-\left(\dfrac{20}{29}\right)^2}=\dfrac{21}{29}\)

*Ta có \(\tan a=\dfrac{\sin a}{\cos a}=\dfrac{21}{29}:\dfrac{20}{29}=\dfrac{21}{20}\)

*Ta có \(\cot a.\tan a=1\Rightarrow\cot a=\dfrac{1}{\tan a}=\dfrac{20}{21}\)

5 tháng 9 2021

thank you bạn nhiều

 

\(\sin\alpha=\sqrt{1-\left(\dfrac{20}{29}\right)^2}=\dfrac{21}{29}\)

\(\tan\alpha=\dfrac{21}{20}\)

\(\cot\alpha=\dfrac{20}{21}\)

\(\sin\alpha=\sqrt{1-\dfrac{400}{29^2}}=\dfrac{21}{29}\)

\(\tan\alpha=\dfrac{21}{20}\)

\(\cot\alpha=\dfrac{20}{21}\)

5 tháng 9 2021

bạn cho mình xincoong thức đc ko

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

NV
16 tháng 4 2022

a.

\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)

\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)

b.

\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)

NV
16 tháng 4 2022

c.

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)

\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)

\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)

\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

1 tháng 4 2017

a/ \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)

\(\Leftrightarrow-2\cos^2x+2\cos x-2\cos x+2\cos^2x=0\)

\(\Leftrightarrow0=0\) (đúng)

\(\RightarrowĐPCM\)

1 tháng 4 2017

b/ \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)

\(\Leftrightarrow\tan a.\tan b.\left(\cot a+\cot b\right)=\tan a+\tan b\)

\(\Leftrightarrow\tan a.\tan b.\cot a+\tan a.\tan b.\cot b=\tan a+\tan b\)

\(\Leftrightarrow\tan b+\tan a=\tan a+\tan b\) (đúng)

\(\RightarrowĐPCM\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} =  - \cos {70^o} =  - \sin {20^o}\)

\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)

Ta có: \(\tan {110^o} =  - \tan {70^o} =  - \cot {20^o};\;\cot {110^o} =  - \cot {70^o} =  - \tan {20^o}.\)

\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)

26 tháng 8 2021

1. Ta có \(1+\tan\alpha=\dfrac{1}{\cos^2\alpha}\Rightarrow\dfrac{1}{\cos^2\alpha}=1+\dfrac{1}{3}\Rightarrow\dfrac{1}{\cos^2\alpha}=\dfrac{4}{3}\Rightarrow\cos^2\alpha=\dfrac{3}{4}\Rightarrow\cos\alpha=\dfrac{\sqrt{3}}{2}\)

Mặt khác, \(tan\alpha=\dfrac{1}{3}=\dfrac{\sin\alpha}{\cos\alpha}\Rightarrow\sin\alpha=\dfrac{\cos a}{3}=\dfrac{\dfrac{\sqrt{3}}{2}}{3}=\dfrac{1}{2\sqrt{3}}\)

2. Ta có \(1+\cot^2\alpha=\dfrac{1}{\sin^2\alpha}\Rightarrow\dfrac{1}{\sin^2\alpha}=1+\dfrac{9}{16}\Rightarrow\dfrac{1}{\sin^2\alpha}=\dfrac{25}{16}\Rightarrow\dfrac{1}{\sin a}=\dfrac{5}{4}\Rightarrow\sin\alpha=\dfrac{4}{5}\)

Mặt khác, \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\Rightarrow\cos\alpha=\sin\alpha.\cot\alpha=\dfrac{3}{4}.\dfrac{4}{5}=\dfrac{3}{5}\)