tìm n để 2n+7chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 7 chia hết cho 3n - 1
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
Còn lại xét 4 trường hợp giống bài trên nha
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
chúc bn hok tốt @_@
2n+7 = 2(n+1) +5 chia hết cho n+1 khi 5 chia hết cho n+1
n+1 thuộc Ư(5) = {1;5}
+ n+1 = 1 => n =0
+ n+1 =5 => n =4
Vậy n= 0 ;hoặc n = 4
2n+7 \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> ( 2n +7) - (n+2) \(⋮\)n+2
=> ( 2n+7) - 2(n+2) \(⋮\)n+2
=> 2n+7 - 2n -4 \(⋮\)n+2
=> 3 \(⋮\)n+2
=> n+2 thuộc Ư(3)= { 1;3}
=> n thuộc { -1; 1}
Vậy...
Vì n + 2 chia hết ( n + 2 )
\(\Rightarrow\)2n + 4 chia hết ( n + 2 )
\(\Rightarrow\)( 2n + 7 ) - ( 2n + 4 ) chia hết ( n + 2 )
\(\Rightarrow\) 3 chia hết ( n + 2 )
\(\Rightarrow\)n + 2 \(\in\) Ư(3) = { 1 ; 2 }
\(\Rightarrow\)n \(\in\) { - 1 ; 0 }
Vì n \(\in\) N
\(\Rightarrow\)n = 0 .
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)
hay \(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
Ta có: 2n+7 chia hết cho n+1
=>2n+2+5 chia hết cho n+1
=>2.(n+1)+5 chia hết cho n+1
=>5 chia hết cho n+1
=>n+1=Ư(5)=(-1,-5,1,5)
=>n=(-2,-6,0,4)
Vậy n=-2,-6,0,4