K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m^2-4m^2+4m-4=4m-4

Để (1) có 2 nghiệm thì 4m-4>=0

=>m>=1

 

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

NV
9 tháng 5 2020

\(\Delta'=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)

\(A=x_1x_2-\left(x_1+x_2\right)\)

\(=m^2-3m+1\)

Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề

9 tháng 5 2020

Uk đó là min

4 tháng 5 2021

Ta có:

\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt với mọi GT của m

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)

Thay vào A ta được:

\(A=x_1^2+x_2^2-3x_1x_2\)

\(A=\left(x_1+x_2\right)^2-5x_1x_2\)

\(A=\left(-m-2\right)^2-5\left(m-1\right)\)

\(A=m^2+4m+4-5m+5=m^2-m+9\)

\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)

\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)

Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)

Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)

4 tháng 5 2021

Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2

= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5

= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m

Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4

28 tháng 1 2020

Ta có :

\(x^2-2mx-4m-4=0\)

\(\Rightarrow x^2+2x-2mx-4m-2x-4=0\)

\(\Leftrightarrow x\left(x+2\right)-2m\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2m-2\right)=0\)

\(\Rightarrow|\left[{}\begin{matrix}x+2=0\\x-2m-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2m+2\end{matrix}\right.\)

Vạy phương trình ban đầu có 2 nghiệm là -2 và (2m+2) . Để phương trình có một nghiệm nhỏ hơn -2018 thì :

2m+2 < -2018

\(\Leftrightarrow2m< -2020\)

\(\Leftrightarrow m< -1010\)

Vậy vs m < -1010 thì pt có một nghiệm nhỏ hơn -2018

28 tháng 1 2020

Vương Thị Thanh Hoa ừm vui

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ...