Cho \(Sn=\sqrt{1+99..9+\left(0,99..9\right)^2}\). Hãy viết \(Sn\) dưới dạng phân số.
99..9 là n chữ số 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 0,999...99 (20 chữ số 9)
Vì\(0< A< 1\Rightarrow A^2< A< 1\) (1)
Khai căn bậc hai cả 3 vế của (1) \(\Rightarrow A< \sqrt{A}< 1\)(2)
Từ (2) suy ra 20 chữ số thập phân của \(\sqrt{A}\)cũng là 20 chữ số 9.
tự hỏi tự trả lời kiếm l-i-k-e ak??
75675675685685656963453453452352345634546546546544756453
\(99...9=10^n-1\)(n chữ số 9)
\(0,99...9=1-\dfrac{1}{10^n}\)(n chữ số 9)
\(\sqrt{1+99...9^2+0.99...99^2}\\ =\sqrt{1+\left(10^n-1\right)^2+\left(1-\dfrac{1}{10^n}\right)^2}\\ =\sqrt{1+10^{2n}+1-2.10^n+1+\dfrac{1}{10^{2n}}-\dfrac{2}{10^n}}\\ =\sqrt{3+10^{2n}-2.10^n+\dfrac{1}{10^{2n}}-\dfrac{2}{10^n}}\\ =\sqrt{\dfrac{3.10^{2n}+10^{4n}-2.10^{3n}+1-2.10^n}{10^{2n}}}\\ =\sqrt{\dfrac{\left(10^{2n}-10^n+1\right)^2}{10^{2n}}}=\dfrac{10^{2n}-10^n+1}{10^n}\\ =10^n-1+\dfrac{1}{10^n}=99...9+1-0,99...9=99...9,00...1\)
(n chữ số 9,n-1 chữ số 0)
Đợi mãi k có ai trả lời:
Đặt M=0,99..99(có 20 chữ số 9).Vì M<1 nên M<căn M (1)
Lại có (căn a)+(căn (a-x))< 2 (căn a) (với a>x>0) =>(căn a) - (căn (a-x))=x/((căn a)+(căn (a-x))) > x/(2 căn a)
Áp dụng với a=1 và x= 10^-20 suy ra 1-căn M >0,5.10^-20 => căn M < 1- 0,5.10^-20 =0.99.995(có 20 chữ số 9).Kết hợp với (1) suy ra M<căn M < 0,99..995 (có 20 chữ số 9),suy ra 20 chữ số thập phân đầu tiên sau dấu phẩy của căn M là 20 chữ số 9.
Đặt M=0,99..99(có 20 chữ số 9).Vì M<1 nên M<căn M (1)
Lại có (căn a)+(căn (a-x))< 2 (căn a) (với a>x>0) =>(căn a) - (căn (a-x))=x/((căn a)+(căn (a-x))) > x/(2 căn a)
Áp dụng với a=1 và x= 10^-20 suy ra 1-căn M >0,5.10^-20 => căn M < 1- 0,5.10^-20 =0.99.995(có 20 chữ số 9).Kết hợp với (1) suy ra M<căn M < 0,99..995 (có 20 chữ số 9),suy ra 20 chữ số thập phân đầu tiên sau dấu phẩy của căn M là 20 chữ số 9.
Tất cả những vấn đề em hỏi đều thuộc lý thuyết phân tích cấu tạo số cơ bản. Tất nhiên, lời giải sẽ có 1 chút tắt (không đáng kể).
Tip: Em chịu khó viết ra nháp từng bước một và đọc kỹ. Nếu thấy số dài mà không hiểu vì sao người ta làm vậy, em thử với bộ số nhỏ hơn có phong cách tương tự (ví dụ 994009)
\(\underbrace{999....9}_{10} 4\underbrace{000..0}_{10}9=\underbrace{999....9}_{10} 4\underbrace{00...0}_{11}+9\)
\(=\underbrace{999....9}_{10}4\times 1\underbrace{00...0}_{11}+9\)
\(=(\underbrace{999....9}_{10}7-3)\times (\underbrace{99....9}_{10}7+3)-9\)
(em tưởng tượng 1000 có 3 chữ số 0 đằng sau, biểu diễn được thành 997+3 có 3-1=2 chữ số 9)
\(\frac{1}{9}\),\(\frac{7}{9}\),\(\frac{5}{90}\),\(\frac{7}{900}\),\(\frac{13}{99}\),\(\frac{21}{99}\),\(\frac{32}{99}\),\(\frac{53}{99}\),\(\frac{12}{990}\),\(\frac{46}{9900}\),\(\frac{123}{999}\),\(\frac{456}{999}\),\(\frac{14234}{9999}\),\(\frac{13}{9999}\),\(\frac{7}{99900}\),\(\frac{230}{99900}\),\(\frac{7}{999}\),\(\frac{33}{9999}\),\(\frac{17}{999000}\),\(\frac{230}{999900}\)