K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

Gọi O là giao điểm của AC va BD

\(AO^2=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)

\(\dfrac{n^2}{4}=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)

\(n^2=2\left(a^2+b^2\right)-m^2\)

⇒⇒\(n^2+m^2=2\left(n^2+m^2\right)\)

20 tháng 9 2017

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Gọi O là giao điểm của AC và BD ⇒ O là trung điểm của AC và BD.

Xét ΔABC có BO là trung tuyến

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Mà O là trung điểm của BD nên BD = 2. BO ⇒ BD2 = 4. BO2

⇒ BD2 = 2.(AB2 + BC2) – AC2

⇒ BD2 + AC2 = 2.(AB2 + BC2)

⇒ m2 + n2 = 2.(a2 + b2) (ĐPCM).

30 tháng 3 2017

Áp dụng định lí về đường trung tuyến:

OA2 = - (1)

Thay OA = , AB = a, AD = BC = b và BD = m vào (1) ta có:
\(\left(\dfrac{n}{2}\right)^2=\dfrac{b^2+a^2}{2}-\dfrac{m^2}{4}\)
\(\Leftrightarrow\dfrac{n^2}{4}+\dfrac{m^2}{4}=\dfrac{a^2+b^2}{2}\)
\(\Leftrightarrow m^2+n^2=2\left(a^2+b^2\right)\)

A B C D a b n m

 

21 tháng 1 2022

Gọi giao điểm của AC và BD là O

Ta có: \(OB^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Leftrightarrow\) \(4OB^2+AC^2=2\left(AB^2+BC^2\right)\)

\(\Leftrightarrow\) \(BD^2+AC^2=2\left(AB^2+BC^2\right)\) (Do \(4OB^2=\left(2OB\right)^2\) mà 2OB = BD)

\(\Leftrightarrow\) \(m^2+n^2=2\left(a^2+b^2\right)\) (đpcm)

Chúc bn học tốt!

13 tháng 4 2016

Áp dụng định lí về đường trung tuyến:

OA – 

Thay OA =  , AB = a

AD = BC = b và BD = m => dpcm

28 tháng 8 2021

- Gọi E là giao điểm của AC và BD

△ABE có trung tuyến BE

\(\Rightarrow BE^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)

\(\Rightarrow4.BE^2=2\left(AB^2+BC^2\right)-AC^2\)

Mà O là trung điểm BD \(\Rightarrow BD=2.BE\Rightarrow BD^2=4.BE^2\)

\(\Rightarrow BD^2=2\left(AB^2+BC^2\right)-AC^2\)

\(\Rightarrow BD^2+AC^2=2\left(AB^2+BC^2\right)\)

Vậy: \(AC^2+BD^2=2\left(a^2+b^2\right)\left(đpcm\right)\)

(Hình như đây là Toán 10?)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Kẻ đường cao $BH, DT$ của hình bình hành

Dễ chứng minh $\triangle ADT =\triangle BCH$ (ch-gn)

$\Rightarrow DT=CH; AT=BH$

Áp dụng định lý Pitago:

$AC^2+BD^2=AT^2+TC^2+BH^2+DH^2$

$=(AT^2+BH^2)+TC^2+DH^2)$

$=2AT^2+(DC-DT)^2+(DC+CH)^2$

$=2(AD^2-DT^2)+(DC-DT)^2+(DC-DT)^2$

$=2(b^2-DT^2)+(a-DT)^2+(a+DT)^2$

$=2(b^2+a^2)$

Ta có đpcm.

4 tháng 10 2015

(Tự vẽ hình nhen)

a,Ta có ABCD là hbh => gADC=gABC(1)

BM là phân giác gABC(gt)=>gABM=1/2gABC(2)

DN là phân giác gADC(gt)=>gMDN=1/2gADC(3)

Từ(1),(2) và (3)=> gNDM=gNBM

Mặt khác NB//DM(t/c hbh)=> BMDN là hbh

b,Gọi O là giao điểm của AC và BD(4)

=>O là trung điểm của BD(t/c hbh)

Ta lại có BMDN là hbh(câu a)=>O cũng là trung điểm của MN(5)

Từ (4) và (5)=>AC,BD,MN đồng quy tại O