K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

Mk chỉ làm đc câu a) thôi còn câu b mk cũng đang hỏi.

Đặt \(4-x=a\); \(x-2=b\) \(\Rightarrow\) \(a+b=2\)

\(\Leftrightarrow\)\(\left(a^3+b^3\right)\left(a^2+b^2\right)-a^2b^2\left(a+b\right)=32\)

\(\Leftrightarrow\)\(\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\left[\left(a+b\right)^2-2ab\right]-a^2b^2\left(a+b\right)=32\)

thay \(a+b=2\) ta có:

\(\left(8-6ab\right)\left(4-2ab\right)-2\left(ab\right)^2=32\)

\(\Leftrightarrow\) \(32-40ab+10\left(ab\right)^2=32\)

\(\Leftrightarrow\)\(10ab\left(-4+ab\right)+32-32=0\)

\(\Leftrightarrow\)\(ab\left(ab-4\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}ab=0\\ab-4=0\end{matrix}\right.\)

Với \(ab=0\) thì \(\left(4-x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}4-x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Với \(ab-4=0\) thì \(\left(4-x\right)\left(x-2\right)-4=0\)

\(\Leftrightarrow\)\(6x-8-x^2-4=0\)

\(\Leftrightarrow\)\(6x-12-x^2=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+12\right)=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+9+3\right)=0\)

\(\Leftrightarrow\)\(-\left(x-3\right)^2-3=0\) ( vô lí )

Vậy pt có tập nghiệm \(S=\left\{2;4\right\}\)

12 tháng 2 2020

Các bạn nhớ tick cho mk nha

a) Ta có: \(\left\{{}\begin{matrix}2\left(x+1\right)-3\left(y-2\right)=5\\-4\left(x-2\right)+5\left(y-3\right)=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2-3y+6=5\\-4x+8+5y-15=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\2x-3y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x-3\cdot0=-3\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)

Vậy: hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}8\left(x-3\right)-3\left(y+1\right)=-2\\3\left(x+2\right)-2\left(1-y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-24-3y-3=-2\\3x+6-2+2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y=75\\24x+16y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-25y=67\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-67}{25}\\3x=1-2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=1-2\cdot\dfrac{-67}{25}=\dfrac{159}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\x=\dfrac{3y-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(-\dfrac{3}{2};0\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}16x-6y=50\\9x+6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}25x=53\\y=\dfrac{1-3x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{53}{25};-\dfrac{67}{25}\right)\) 

11 tháng 4 2023

ĐKXĐ : \(x\ge-2\)

\(\sqrt{1+\left(x+2\right).\sqrt{1+\left(x+3\right).\left(x+5\right)}}=2023x+1\)

\(\Leftrightarrow\sqrt{1+\left(x+2\right).\sqrt{x^2+8x+16}}=2023x+1\)

\(\Leftrightarrow\sqrt{1+\left(x+2\right).\left(x+4\right)}=2023x+1\) (Do \(x\ge-2\Rightarrow x+4>0\))

\(\Leftrightarrow\sqrt{x^2+6x+9}=2023x+1\)

\(\Leftrightarrow x+3=2023x+1\) (Do \(x\ge-2\Rightarrow x+3>0\)

\(\Leftrightarrow x=\dfrac{1}{1011}\)(tm) 

Vậy tập nghiệm \(S=\left\{\dfrac{1}{1011}\right\}\)