Cho \(\Delta ABC\) có D;E lần lượt là trung điểm của AB và AC. Chứng minh: DE // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
\(\left(a\right).Xét\Delta ACNvà\Delta BDN:\)
\(AN=BN\left(gt\right)\)
\(\widehat{ANC}=\widehat{BND}\left(đđ\right)\)
\(NC=ND\left(gt\right)\)
\(\Rightarrow\Delta ACN=\Delta BDN\left(c.g.c\right)\)
\(\left(b\right).\)
\(TC:\)
\(NA=NB\left(gt\right)\)
\(ND=NC\left(gt\right)\)
\(\Rightarrow DACBlàhìnhbìnhhành\)
\(\Rightarrow AD//BC\)
AD/DB=AM/MB
AE/EC=AM/MC
mà MB=MC
nên AD/DB=AE/EC
=>DE//BC
Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1
=>AM/MB=AM/MC=1
=>ΔABC vuông tại A
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Lời giải:
Kéo dài $BG$ cắt $AC$ tại $K$. Kẻ $KK'\perp d$
Trên $BG$ lấy trung điểm $I$. Kẻ $II'\perp d$
Vận dụng công thức đường trung bình trong hình thang ta có:
Xét hình thang $BGG'B'$ có đtb $II'$ thì:
$II'=\frac{BB'+GG'}{2}(1)$
Xét hình thang $AA'C'C$ có đường trung bình $KK'$ thì:
$KK'=\frac{AA'+CC'}{2}(2)$
Xét hình thang $II'KK'$ có đường trung bình $GG'$ thì:
$GG'=\frac{II'+KK'}{2}(3)$
Từ $(1);(2);(3)$ suy ra:
$GG'=\frac{BB'+GG'+AA'+CC'}{4}$
$\Rightarrow GG'=\frac{AA'+BB'+CC'}{3}$
Ta có đpcm.
b: ta có: ΔABC cân tại A
mà AD là đường phân giác
nên D là trung điểm của BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên BD=CE; AD=AE
Xét ΔBCD và ΔCBE có
BC chung
CD=BE
BD=CE
DO đó: ΔBCD=ΔCBE
c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có
BE=CD
\(\widehat{EBH}=\widehat{DCH}\)
Do đó: ΔBHE=ΔCHD
d: Ta có: ΔBHE=ΔCHD
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
A B C D E F
Trên tia đối của ED lấy F sao cho ED = EF
Xét \(\Delta EAD;\DeltaÈFC\) có :
\(\left\{{}\begin{matrix}DE=EF\\\widehat{AED}=\widehat{FEC}\\AE=EF\end{matrix}\right.\)
\(\Leftrightarrow\Delta EAD=\Delta ECF\left(c-g-c\right)\)
\(\Leftrightarrow\widehat{EAD}=\widehat{ECF}\)
Mà đây là 2 góc so le trong
\(\Leftrightarrow AB\backslash\backslash CF\)
\(\Leftrightarrow\widehat{BDC}=\widehat{FCD}\left(s.l.t\right)\)
Ta có : \(\Delta EAD=\Delta ECF\left(cmt\right)\)
\(\Leftrightarrow AD=CF\)
Mà \(AD=DB\)
\(\Leftrightarrow CF=DB\)
Xét \(\Delta BDC;\Delta FCD\) có :
\(\left\{{}\begin{matrix}BD=FC\\\widehat{BDC}=\widehat{FCD}\\DCchung\end{matrix}\right.\)
\(\Leftrightarrow\Delta BDC=\Delta FCD\left(c-g-c\right)\)
\(\Leftrightarrow\widehat{BCD}=\widehat{FDC}\)
Mà đây là 2 góc so le trong
\(\Leftrightarrow DE\backslash\backslash BC\left(đpcm\right)\)