K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Ta có: 3^0 + 3^1 + 3^2 + 3^3 + ... + 3^11

= ( 3^0 + 3^1 + 3^2 + 3^3 ) + ... + ( 3^8 + 3^9 + 3^10 + 3^11 )

= 40 + ... + 3^8 . ( 3^0 + 3^1 + 3^2 + 3^3 )

= 40 + ... + 3^8 . 40

= 40 . ( 1 + ... + 3^8 ) \(⋮\)40

~ Chúc bạn học giỏi! ~

3 tháng 1 2018

\(1+3+3^2+............+3^{11}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)

\(=1.40+3^4.40+3^8.40\)

\(=40\left(1+3^4+3^8\right)⋮40\left(đpcm\right)\)

18 tháng 12 2021

gải giúp mình với

23 tháng 4 2017

\(C=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(C=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)

\(C=\left(1+3+3^2+3^3\right).\left(1+3^4+3^8\right)\)

\(C=40.\left(1+3^4+3^8\right)\)

Vậy \(C⋮40\)

23 tháng 4 2017

sửa đề là cho \(C=1+3+3^2+3^3+...+3^{11}\)

Ta có: \(C=1+3+3^2+3^3+3^4+...+3^{11}\)

\(C=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(C=4+3^2.4+3^4.4+3^6.4+...+3^{10}.4\)

\(C=4\left(1+3^2+3^4+3^6+3^8+3^{10}\right)⋮4\left(ĐPCM\right)\)

VẬy C chia hết cho 4

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

11 tháng 1 2023

\(C=1+3+3^2+3^3+...+3^{11}\)

\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(C=4+3^2.\left(1+3\right)+...+3^{10}.\left(1+3\right)\)

\(C=4+3^2.4+...+3^{10}.4\)

\(C=4.\left(1+3^2+...+3^{10}\right)\)

Vif \(4⋮4=>C⋮4\)

11 tháng 1 2023

\(C=1+3+3^2+3^3+...+3^{11}\\ =\left(1+3\right)+3^2\left(1+3\right)+...+3^{10}\left(1+3\right)\\ =\left(1+3\right)\left(1+3^2+....+3^{10}\right)\\ =4\left(1+3^2+....+3^{10}\right)⋮4\)

\(=>C⋮4\)

20 tháng 11 2015

(3+ 32 +33 ) + (3+ 35 +36 ) + ... + (32008 + 32009 + 32010 )

= 3 ( 1+ 3 + 9 ) + 34 ( 1+ 3 +9 ) + ... + 32008 ( 1 + 3 +9 )

= 13 ( 3 + 34 + ... + 32008 )    chia hết cho 13

22 tháng 12 2023

Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)

\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

29 tháng 10 2021

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

28 tháng 10 2022

câu a của bạn thiếu 2 mũ 2