cho tam giac AbC vuong tai A . Goi I la trung diem cua BC . Qua I ve IM vuong goc voi AB tai M va IN vuong goc voi AC tai N . a, Chung minh AMIN la hinh chu nhat b, Goi D la diem doi xung cua I qua N .Chung minh ADCI la hinh thoi c, Duong thang BN cat DC tai K . Chung minh DK/DC=1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác APMN có
góc APM=góc ANM=góc PAN=90 độ
nên APMN là hình chữ nhật
b: Xét tứ giác AMIQ có
N là trung điểm chung của AI và MQ
MQ vuông góc với AI
Do đó: AMIQ là hình thoi
Hướng giải:
a) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF)
b) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) - câu a
kq: hình bình hành (dấu hiệu: tứ giác có 2 cạnh đối song song và bằng nhau)
c) cm BFKC là hình chữ nhật
(bằng cách: - cm BFKC là hình bình hành theo dấu hiệu tứ giác có 2 cặp cạnh đối song song
- cm BFKC là hình chữ nhật theo dấu hiệu hình bình hành có 1 go1cv vuông là hình chữ nhật)
Áp dụng tính chất hình chữ nhật có 2 đường chéo bằng nhau và CẮT NHAU TẠI TRUNG ĐIỂM MỖI ĐƯỜNG)
d) EI // OC (do OEIC là hình bình hành - cmt ở câu b)
Có chung điểm I => HI // EI (// OC) hay HK // EI
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a) Xét tứ giác AMIN, ta có:
\(\widehat{A}\) = 90o (△ABC vuông tại A)
\(\widehat{M}\) = 90o (IM ⊥ AB tại M)
\(\widehat{N}\) = 90o (IN ⊥ AC tại N)
Vậy tứ giác AMIN là hình chữ nhật.
b) *Xét △AIC, ta có:
IA = IC (AI là đường trung tuyến của △vABC)
⇒ △AIC cân tại A
Mà IN ⊥ AC (gt)
Nên IN là đường cao của △AIC
⇒ Đồng thời là đường trung tuyến
⇒ AN = NC
*Xét tứ giác ADCI, ta có:
IN = ND (gt)
AN = NC (cmt)
⇒ ADCI là hình bình hành
Mà AI = IC (cmt)
Vậy ADCI là hình thoi.
c) Gọi O là giao điểm BN và AI
Vì ADCI là hthoi (cmt)
⇒ AI // CD
⇒ \(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)
*Cm: △INP = △DNK (g.c.g)
⇒ IP = DK
*Vì ADCI là hthoi (cmt)
⇒ AI = DC
*Ta có:
AN = NC (cmt)
⇒ BN là đường trung tuyến
*Xét △ABC, ta có:
AI, BN là đường trung tuyến (gt,cmt)
Mà AI, BN cắt nhau tại B (theo cách vẽ)
Nên P là trọng tâm của △ABC
⇒ \(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)
Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)