Cho A = 11n+2 + 122n+1, n ∈ N. Chứng minh rằng A ⋮ 133 với mọi n.
Giúp mk với, mai thi rồi, tks trước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^5-n\)
\(=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n^2-1\right)\)
Ta có số hạng đầu tiên là tích 5 số nguyên liên tiếp nên chia hểt cho 5, số hạng thứ 2 chia hết cho 5
Vậy \(n^5-n⋮5\)
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
144n – 11n chia hết 133 11n + 2 + 122n + 1 chia hết cho 133
chúc bạn học tốt !!!
A = n2(n + 1) + 2n(n+1) = n(n+1)(n+2)
Ta thấy A là tích của 3 số tự nhiên liên tiếp nên nó chia hết cho 3
Và n(n+1) luôn chia hết cho 2 vì là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
Số A vừa chia hết cho 2 vừa chia hết cho 3 nên A chia hết cho 2*3 = 6 . ĐPCM
Đinh Thùy Linh Bạn cần bổ sung thêm nữa :
\(\left(2,3\right)=1\)
a) Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
À mình ra được như trên vì có công thức :
\(a^n-b^n⋮a-b\)
Chúc bạn thi tốt !!!
Cách 2 : Dùng phương pháp quy nạp!!!
+) Với n=1 thì \(A=11^{1+2}+12^{2.1+1}=1331+1728=3059⋮133\)
Vậy biểu thức đúng với n=1
+) Giả sử bài toàn đúng với n=k hay \(11^{k+2}+12^{2k+1}⋮133\)
+) Ta CM bài toán đúng với n=k+1
Ta có :
\(P=11^{k+3}+12^{2k+3}\\ =11.11^{k+2}+12^{2k+1}.144\\ =11\left(11^{k+2}+12^{2k+1}\right)+133.12^{2k+1}\\ 11^{k+2}+12^{2k+1}⋮133\left(GTQN\right)\\ \Rightarrow P⋮133\)
Theo quy nạp ta có đpcm!!