𝐴 = |𝑛 − 3| + 2
tìm giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4-\left(n+3\right)^2\)
Ta có \(-\left(n+3\right)^2\le0\Leftrightarrow4-\left(n+3\right)^2\le4\)
Dấu \("="\Leftrightarrow n=-3\)
giá trị lớn nhất của A là 4 , sảy ra khi ( n+3)2=0
n+3=0
n=-3
Ta có \(\left(n+3\right)^2\ge0\forall x\) \(\Rightarrow4-\left(n+3\right)^2\le4\forall x\)
Dấu "=" xảy ra khi \(n+3=0\Leftrightarrow n=-3\)
Vậy \(A_{min}=4\) khi \(x=-3\)
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
A=2(x^2-2.5/4x+25/16)-50/16+7
A=2(x-√10/5)^2+31/8
Vì(x-√10/5)^2>=0 với mọi x
=>A>=31/8
Chọn B
\(2x^2-5x+7=2\left(x^2-\dfrac{5}{2}x+\dfrac{25}{16}\right)-\dfrac{25}{8}+7=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{25}{8}+7\ge\dfrac{31}{8}\)
ĐTXR⇔\(x=\dfrac{5}{4}\)
Vậy minA =\(\dfrac{31}{8}\)khi x=\(\dfrac{5}{4}\)
Đáp án: \(B:\dfrac{31}{8}\)
\(\left|n-3\right|\ge0,\forall n\\ \Rightarrow A=\left|n-3\right|+2\ge2\)
Dấu \("="\Leftrightarrow n=3\)
\(\left|n-3\right|+2\ge2\forall n\)
Dấu '=' xảy ra khi n=3