Gpt: x2 -\(\dfrac{\sqrt{5}}{\sqrt{5}-2}\)x -(6+\(2\sqrt{5}\)) =0
Giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
`a)(5sqrt2-2sqrt5)/(sqrt5-sqrt2)+6/(2-sqrt{10})`
`=(sqrt{10}(sqrt5-sqrt2))/(sqrt5-sqrt2)+(6(2+sqrt{10}))/(4-10)`
`=sqrt{10}-(2+sqrt{10})`
`=-2`
`b)6/(sqrt5-1)+7/(1-sqrt3)-2/(sqrt3-sqrt5)`
`=(6(sqrt5+1))/(5-1)+(7(1+sqrt3))/(1-3)-(2(sqrt3+sqrt5))/(3-5)`
`=(6(sqrt5+1))/4-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3)/2-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3-7-7sqrt3+2sqrt3+2sqrt5)/2`
`=(5sqrt5-5sqrt3-4)/2`
ĐK:\(x\ge0;x\ne9\)
a) \(P=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\dfrac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+x-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
b)\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=1+\dfrac{2}{\sqrt{x}+2}\le1+\dfrac{2}{0+2}=2\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(P_{max}=2\)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
để mk làm cho ; bài này dùng liên hợp
pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))
<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)
<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)
vậy x=1
a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)
=3
\(\Leftrightarrow x^2-\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}x-\left(6+2\sqrt{5}\right)=0\)
\(\Leftrightarrow x^2-\left(5+2\sqrt{5}\right)x-\left(6+2\sqrt{5}\right)=0\)
ta có a-b+c=\(1+5+2\sqrt{5}-\left(6+2\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-c}{a}=6+2\sqrt{5}\end{matrix}\right.\)