Bài 2: So sánh hai số A và B biết :
A = 2016^2 và B = 2015 . 2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2015^{2016}-2015^{2015}\)
\(=2015^{2015}\left(2015-1\right)\)
\(=2015^{2015}.2014\)
\(B=2015^{2017}-2015^{2016}\)
\(=2015^{2016}\left(2015-1\right)\)
\(=2015^{2016}.2014\)
Vì \(2015^{2015}< 2015^{2016}\)
nên \(A< B\)
Ta có :
\(2015^{2016}< 2015^{2017}\)
\(2015^{2015}< 2015^{2016}\)
\(\Rightarrow\)\(A=2015^{2016}-2015^{2015}< B=2015^{2017}-2015^{2016}\)
Vậy \(A< B\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B
\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)
Suy ra \(A>B\).
Ta có :
\(A=2015^{2016}-2015^{2015}=2015^{2015}\left(2015-1\right)=2015^{2015}.2014\)
\(B=2015^{2017}-2015^{2016}=2015^{2016}\left(2015-1\right)=2015^{2016}.2014\)
Vì \(2015^{2015}< 2015^{2016}\) nên \(2015^{2015}.2014< 2015^{2016}.2014\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
- \(A=\frac{2015}{2016}+\frac{2016}{2017}>1;\)
- \(B=\frac{2015+2016}{2016+2017}< 1\)
- Nên A>B
Đặt 2015.2016+2016=n
suy ra A=(n+1)/n và B=(n+2)/(n+1)
Ta có A - B=(n+1)/n -(n+2)/(n+1)=((n+1)2-n(n+2))/n(n+1)=(n2+2n+1-n2-2n)/n(n+1)=1/n(n+1)
Vì A-B lớn hơn 0 nên A>B
A=\(2016^2=2016.2016\)
B=\(2015.2017=(2015+1)(2017-1)=2016.2016\)
=> A=B = 2016.2016
\(B=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2=A\)