K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Do \(x^3+y^3=1\) \(\Rightarrow x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5+y^5=x^5+y^5+x^2y^3+x^3y^2\)

\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}xy=0\\x+y=0\end{matrix}\right.\)

Nếu \(x+y=0\Rightarrow x^3=-y^3\Rightarrow x^3+y^3=0\) ( mâu thuẫn)

Nếu \(xy=0\) \(\Rightarrow x^3+y^3=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x+y=1\)

ta có\(\left\{{}\begin{matrix}xy=0\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left(x,y\right)=\left\{\left(1,0\right);\left(0,1\right)\right\}\)

16 tháng 10 2019

x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )

– Xét x = 0, hệ (I) trở thành  4 y = y 3 y 2 = 4 < = > y = ± 2

– Xét x ≠ 0, đặt  y x = t < = > y = x t . Hệ (I) trở thành

x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )

 

Nhân từng vế của (1) và (2), ta được phương trình hệ quả

4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20     (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4

+ Với t = – 3, thay vào (2) được x2 = 1 x = ±1.

x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)

x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)

+ Với t = 7/4 , thay vào (2) được  x 2 = − 64 31 (loại)

 

Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).

30 tháng 5 2017

Khi x = - 1; y = 1 thì xy = (-1).1= -1

Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6

= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6

= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6

= -1 – 1 + (-1) – 1 + (-1) – 1

= - 6

Chọn đáp án D

3 tháng 8 2021

D đúng nha!

3 tháng 8 2023

\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)

\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)

\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)

\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)

 

NV
11 tháng 9 2021

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)\)

\(=10.26-\left(-3\right)^2.2=...\)

11 tháng 9 2021

(x+y)5=32

⇔ x5+5x4y+10x3y2+10x2y3+5xy4+y5 = 32

⇔ x5+y= 32-5xy(x3+y3)-10x2y2(x+y)

              = 32-5.(-3).26-10.(-3)2.2

              = 242 

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

6 tháng 12 2019

Đáp án C

20 tháng 10 2017

Đáp án A

12 tháng 5 2017

Xét phương trình:

x 5 – y 5 + x y = 0 ⇔ x 5 – y 5 + x y ( x 3 + y 3 ) = 0 ⇔ ( x – y ) ( x 4 + y 4 ) = 0

⇔ x − y = 0 x 4 + y 4 = 0 ⇔ x = y x = y = 0 ⇔ x = y

Thử lại x = y không thỏa mãn phương trình đầu của hệ.

Vậy hệ vô nghiệm

Đáp án:C

24 tháng 2 2018

Đáp án là D 

16 tháng 8 2019

 

Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) rút ra được: Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 (*)

Thay (*) vào phương trình (2) ta được:

Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 vào (*) ta được:

Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9