Cho \(\Delta ABC\) , D là trung điểm của cạnh AB. Lấy điểm E\(\in AC\) sao cho AE=\(\dfrac{1}{2}AC\)
a) CMR: \(DE\cap BC\)
b) Gọi giao của DE và BC là P. CMR: P nằm ngoài cạnh BC và PB =\(\dfrac{1}{2}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AE/EC=1/ 3# AD/DB=1 nên DE không song song với BC
→ Đường thẳng DE cắt đường thẳng BC
b) Giả sử P nằm trong đoạn thẳng BC
Vì P,D,E thằng hàng nên góc PDE=180º(1)
Mặt khác tia DE,DP nằm giữa hai tia DE và DB nên góc PDE
Từ (1) và (2)→ Mâu thuẫn
→ P nằm ngoài cạnh BC
* Câu này nếu dùng định lý ceva thì quá ngon, chỉ 1 dòng là ra
Với kiến thức lớp 7, có thể làm như sau:
Qua A đường thẳng song song với BC, cắt đường thẳng DE tại F
Áp dụng định lý Talet:
AF/PB=DA/DB=1
AF/PC=AE/EC=1/3
→PC/PB=3
→PC=3.PB
→BC=PC-PB=2.PB
→PB=1/2.BC
Tam giác BDE.m là trung điểm của DE,N là trung điểm của BE => MN là đường trung bình của tam giác BDE=> MN//DB <=> MN//BA
tương tự c/m MQ là đường trung điểm của tam giác DEC => MQ//EC hay MQ//AC.Mà AC vuông góc AB=> MN vuông góc PQ => góc MNQ = 90
Tượng từ theo cách đường trung bình thì các góc còn lại của tứ giác MNPQ = 90 => là hình chữ nhạt
MN là đường trung bình => MN = 1/2 DB,MQ=1/2 EC mà EC=DB => MN=DB
=> tam giác là hình vuông (DHNB)
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó:ΔKBD=ΔKCE
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao