Cho A=3+3^3+3^5+3^7+...+3^27+3^29.Chứng tỏ rằng A chia hết cho 273
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273
a)A=5+52+53+...+58
A= (5+52)+(53+54) + ... + (57+58)
A= 5( 1+5) + 52(5+52)+... + 56(5+52)
A= 30 + 52 . 30 + ... +56.30
A = 30 ( 1 + 52+...+56) chia hết cho 30
=> A chia hết cho 30
b)B=3+33+35+37+...+329
B = (3 + 33 + 35) + (37+39+311) + ... + ( 327+328+329)
B = 273 + 36 (3 + 33 + 35) + ... + 326 (3 + 33 + 35)
B = 273 + 36.273 + ... + 326.273
B = 273 ( 1 + 36+...326) chia hết cho 273
=> B chia hết cho 273
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
A=\(3+3^3+3^5+3^7+...+3^{29}\)
có tất cả số số hạng là:(29-1):2+1=15(số hạng)chia hết cho 3
A=\(\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)
A=\(\left(3+3^3+3^5\right)+3^6.\left(3+3^3+3^5\right)+...+3^{24}.\left(3+3^3+3^5\right)\)
A=\(273.\left(1+3^6+...+3^{24}\right)\)chia hết cho 273(vì 283 chia hết cho 273)
B=3+3^3+3^5+...+3^29
B=(3+3^3+3^5)+....+(3^27+3^28+3^29)
B=273+....+3^26(3+3^2+3^3)
B=273+...+3^26.273 \(\vdots\) 273
Để một số là bội của 273 <=> số đó chia hết 273
= (3 + 33 + 35) + (37 + 39 + 311) + ... ( 325 + 327 + 329)
= 273 + 36(3 + 33 + 35) +...+ 324 (3 + 33 + 35)
= 273 + 36 . 273 + ... + 324 . 273
= 273(1 + 36 + ...) chia hết 273