K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2022

Để một số là bội của 273 <=> số đó chia hết 273

= (3 + 33 + 35) + (37 + 39 + 311) + ... ( 325 + 327 + 329)

= 273 +  36(3 + 33 + 35) +...+ 324 (3 + 33 + 35)

= 273 + 36 . 273 + ... + 324 . 273

= 273(1 + 36 + ...) chia hết 273

Ta có : A = 5 + 52 + 53 + ..... + 58

=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)

=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)

=> A = 30 + 52.30 + .... + 56.30

=> A = 30(1 + 52 + .... + 56

Vì (1 + 52 + .... + 56) là số nguyên 

Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30 

8 tháng 6 2018

A=5+5^2+5^3+...+5^20

=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)

=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)

=30+5^2.30+5^4.30+5^6.30+..+5^18.30

=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)

Vậy A là bội của 30

20 tháng 11 2017

bai 1 (5+52) +....(57+58)

=5.(5+52) +54.(5+52) + 57(5+52)

=5.30 +54 .30 +5.30

=30.(5.54.57) chia hết cho 30

bài 2 

(3+33+35) +...(327+328+329)

=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273

=273.(3+ ......+328) chia hết cho 273


 

4 tháng 8 2017

a)A=5+52+53+...+58

A= (5+52)+(53+54) + ... + (57+58)

A= 5( 1+5) + 52(5+52)+... + 56(5+52)

A= 30 + 52 . 30 + ... +56.30

A = 30 ( 1 + 52+...+56) chia hết cho 30

=> A chia hết cho 30

4 tháng 8 2017

b)B=3+33+35+37+...+329 

B = (3 + 33 + 35) + (37+39+311) + ... + ( 327+328+329)

B = 273 + 36 (3 + 33 + 35) + ... + 326 (3 + 33 + 35

B = 273 + 36.273 + ... + 326.273

B = 273 ( 1 + 36+...326) chia hết cho 273

=> B chia hết cho 273

29 tháng 12 2017

Câu 2:

\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)

\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)

\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)

\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)

\(C=3^{10}.40+3^{14}.40.\)

\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)

29 tháng 12 2017

\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)

25 tháng 7 2015

A=\(3+3^3+3^5+3^7+...+3^{29}\)

có tất cả số số hạng là:(29-1):2+1=15(số hạng)chia hết cho 3

A=\(\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)

A=\(\left(3+3^3+3^5\right)+3^6.\left(3+3^3+3^5\right)+...+3^{24}.\left(3+3^3+3^5\right)\)

A=\(273.\left(1+3^6+...+3^{24}\right)\)chia hết cho 273(vì 283 chia hết cho 273)

23 tháng 11 2017

B=3+3^3+3^5+...+3^29

B=(3+3^3+3^5)+....+(3^27+3^28+3^29)

B=273+....+3^26(3+3^2+3^3)

B=273+...+3^26.273 \(\vdots\) 273

23 tháng 11 2017

ko biết