phân tích đa thức thành nhân tử
(3x+1)2-(3x-1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a/ \(4x^2-9\)
\(=\left(2x-3\right)\left(2x+3\right)\)
b/ \(3x\left(3x-2\right)+1\)
\(=9x^2-6x+1\)
\(=\left(3x-1\right)^2\)
\(a,=\left(2x-3\right)\left(2x+3\right)\)
\(b,=9x^2-6x+1=\left(3x-1\right)^2\)
\(x^3+3x^2-3x-1=\left(x^3-1\right)+\left(3x^2-3x\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x^2+x+1\right)+3x\right]=\left(x-1\right)\left(x^2+4x+1\right)\)
x^3-3x^2+3x-1 = (x^3+1)-(3x^2-3x)
(Mình sẽ có hằng đẳng thức x^3+1 cũng giống như x^3+1^3 vì 1^3=1 nhé )
= ( x^3+1^3)- (3x^2-3x )
=(x-1)* (x^2+ x*1 + 1^2) -( 3x^2-3x)( Chuyển sang hằng đăng thức )
=(x-1 ) *(x^2+ x + 1 ) - 3x(x+1)
=(x-1)*(x^2+x+1-3x )
CÓ MỘT BƯỚC LÀ VÌ DẤU TRỪ Ở TRƯỚC NÊN ĐỔI X+1 THÀNH X-1 NHÉ
Nếu đúng k dùm minha j , cảm ơn
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)
\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)
\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)
\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a\)ta có :
\(a\left(a+1\right)-6\)
\(=a^2+a-6\)
\(=a^2+6a-a-6\)
\(=\left(a^2+6a\right)-\left(a+6\right)\)
\(=a\left(a+6\right)-\left(a+6\right)\)
\(=\left(a+6\right)\left(a-1\right)\)
Thay \(a=x^2+3x+1\)vào A ta có :
\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)
\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)
(-x-1)2-(3x-4)2=(x2+2x+1)-(9x2-24x+16)=-8x2+26x-15=\(-8\left(x-\dfrac{5}{2}\right)\left(x-\dfrac{3}{4}\right)\)
(3x+1)*2-(3x-1)*2= (3x+1-3x+1) (3x+1+3x-1 = 2.6x = 12x