Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy điểm P sao cho NP = MN
a,Cm: tam giác AMN = tam giác CPN
b,Cm: CP = BM ; CP song song BM
c,Cm: MN song song BC
d,Nhận xét gì về MN so với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác AMN và tam giác CPN có:
AN=NC (N là trung điểm của AC)
\(\widehat{MNA}=\widehat{DNC}\)(2 góc đối đỉnh)
MN=NP
=> tam giác AMN= tam giác CPN(c-g-c)
b)Vì tam giác AMN= tam giác CPN
=>MA=PC ; \(\widehat{MAN}=\widehat{DCN}\)
Mà MA=MB(m là trung điểm của AB) ; Mà 2 góc này ở vị trí so le trong
=>CP=BM ;=>CP//BM
Vậy CP=BM và CP//BM
c)Xét tam giác MBC và tam giác PCM có:
MB=CP
\(\widehat{BMC}=\widehat{DCM}\)(MB//CP)
MC chung
=>tam giác MBC= tam giác CPM(c-g-c)
=>\(\widehat{PMC}=\widehat{BCM}\) ; MD=BC
Mà 2 goác này ở vị trí so le trong ; =>2MN=BC
=>MN//BC ; =>MN=\(\frac{1}{2}BC\)
a,Xét tg AMN và tg CPN có
\(\hept{\begin{cases}AN=NC\left(gt\right)\\NP=NM\left(gt\right)\\\widebat{ANM=\widebat{CNP\left(đ\right)}}\end{cases}}\)
\(\Rightarrow\)tg AMN = tg CPN ( c.g.g )
b, Vì tg AMN = tg CPN ( cma )
\(\hept{\begin{cases}\Rightarrow AM=CP\left(2\right)cạnhtứng\\MàAM=MB\left(gt\right)\end{cases}}\)
\(\Rightarrow\)CP=MP
c, Vì tg AMN = tg CPN ( cma )
\(\hept{\begin{cases}\Rightarrow\widebat{MAN=\widebat{PCN}\left(tu\right)}\\Mà2gócởSLT\end{cases}}\)
\(\Rightarrow\)CP//BM
+ Xét ∆AMN và ∆CKN có:
AN = NC (gt)
\(\widehat{ANM}=\widehat{CNK}\)( đối đỉnh)
NM = NK (gt)
=>∆AMN = ∆CKN (c-g-c)
+ Cm được ∆ANK = ∆CNM
=> Góc NAK = góc NCM ( tương ứng)
=> AK // MC ( so le trong =)
Vì∆AMN = ∆CKN => MA = KC và góc AMN = góc CKN
+ XÉt∆MNB và ∆KND có :
MN = KN(gt)
\(\widehat{BMN}=\widehat{DKN}\)
MB = KD ( vì MB = MA; MA = KC; KC = KD)
=> ∆MNB = ∆KND (c-g-c) (1)
=> NB = ND
và góc MNB = góc KND mà M,N,K thẳng hàng
=> B,N,D thẳng hàng
Từ(1),(2) => N là trung điểm BD
a.
Xét \(\Delta AMN;\Delta CPN\) có :
\(AN=NC\left(gt\right)\\ \widehat{ANM}=\widehat{CNP}\left(đ^2\right)\\ NM=NP\left(gt\right)\\ \Rightarrow\Delta AMN=\Delta CPN\left(c-g-c\right)\)
b.
\(\Delta AMN=\Delta CPN\left(cmt\right)\\ \Rightarrow AM=CP\\ \Rightarrow BM=CP\)
c.
Xét \(\Delta BMC;\Delta PCM\) có :
\(BM=CP\left(cmt\right)\\ \widehat{BMC}=\widehat{PCM}\left(cmt\right)\\ MC\left(chung\right)\\ \Rightarrow\Delta BMC=\Delta PCM\left(c-g-c\right)\\ \Rightarrow\widehat{PMC}=\widehat{BCM}\)
=> MN // BC
d)
\(\Delta BCM=\Delta PMC\left(cmt\right)\\ \Rightarrow MP=BC\\ \Rightarrow MN=\dfrac{1}{2}BC\)