K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của AK và BD là O

hay AK cắt BD tại O(1)

Xét ΔADB có

BQ là đường trung tuyến ứng với cạnh AD

DM là đường trung tuyến ứng với cạnh AB

BQ và DM cắt nhau tại K

Do đó: K là trọng tâm của ΔADB

Suy ra: O là trung điểm của BD

Xét ΔBCD có 

BN là đường trung tuyến ứng với cạnh DC

DP là đường trung tuyến ứng với cạnh BC

BN cắt DP tại G

Do đó: G là trọng tâm của ΔBCD

Suy ra: AG là đường trung tuyến ứng với cạnh BD

mà AO là đường trung tuyến ứng với cạnh BD

và AG,AO có điểm chung là A

nên A,G,O thẳng hàng

hay CG cắt DB tại O(2)

từ (1), (2) và (3) suy ra BD,AK,CG đồng quy

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

=>MN vuông góc với BD

=>MN vuông góc với MQ(3)

Từ (1) và (2) suy ra MNPQ là hình bình hành(4)

Từ (3) và (4) suy ra MNPQ là hình chữ nhật

13 tháng 8 2016

A B D C F E Q P M N

18 tháng 10 2019

hình cậu vẽ sai rồi

14 tháng 2 2016

ảnh ở đâu đấy,làm sao vậy chỉ đi

11 tháng 8 2016

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

12 tháng 8 2016

bạn vẽ hình đc k 

14 tháng 11 2021

Xét ΔABD có : M là trung điểm AB (gt)

                        Q là trung điểm AD (gt)

=> MQ là đường trung bình của ΔABD

=> MQ // BD ; MQ = 1/2 BD (1)

Xét ΔCBD có : N là trung điểm BC (gt)

                        P là trung điểm CD (gt)

=> NP là đường trung bình của ΔCBD

=> NP // BD ; NP = 1/2 BD (2)

Từ (1) và (2) => MQ // NP; MQ = NP

Xét tứ giác MNPQ có : MQ // NP (cmt)

                                     MQ = NP (cmt)

=> Tứ giác MNPQ là hình bình hành

14 tháng 11 2021

mik cam on bn

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn...
Đọc tiếp

Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.

A. AD BC  . B. MQ PN  . C. MN QP  . D. AB DC  .

Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng

A. HA CD  và AD CH  .

B. HA CD  và DA HC  .

C. HA CD  và AD HC  .

D. HA CD  và AD HC  và OB OD  .

Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng

A. 1. B. 2. C. 2. D. 3.

Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm   4 , 3 . Độ dài của vectơ AB là

A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm

Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng

A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a

Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB  . Độ dài vectơ AC là

A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c

0