K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2017

Lời giải:

\(S=1+5^2+5^4+....+5^{198}+5^{200}\) (1)

\(\Rightarrow 5^2.S=5^2+5^4+...+5^{200}+5^{202}\) (2)

Lấy (2) trừ (1):

\(S(5^2-1)=(5^2+5^4+...+5^{200}+5^{202})-(1+5^2+....+5^{200})\)

\(\Leftrightarrow 24S=5^{202}-1\Leftrightarrow S=\frac{5^{202}-1}{24}\)

27 tháng 12 2017

\(S=1+5^2+5^4+...+5^{200}.\)

\(5^2S=5^2\left(1+5+5^2+...+5^{200}\right).\)

\(5^2S=5^2+5^4+5^6+...+5^{202}.\)

\(5^2S-S=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right).\)

\(24S=5^{202}-1\Rightarrow S=\dfrac{5^{202}-1}{24}.\)

Vậy.....

10 tháng 6 2016

Từ đầu bài 

=> 52S=52+54+56+...+5202

=>52S-S= (52+54+56+...+5202)-(1+52+54+...+5200)

=>  24.S = 5202-1

=>     S  = \(\frac{5^{202}-1}{24}\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2023

Lời giải:
Gọi tổng trên là $K$
$K=1+5^2+5^3+5^4+...+5^{200}$

$5K=5+5^3+5^4+5^5+...+5^{201}$
$\Rightarrow 5K-K = 5+5^{201}-1-5^2$

$\Rightarrow 4K = 5^{201}-21$

$\Rightarrow K= \frac{5^{201}-21}{4}$

2 tháng 10 2023

\(S=1-2+3-4+...+199-200+201\)

\(=\left(1-2\right)+\left(3-4\right)+...+\left(199-200\right)+201\)

\(=1+1+...+1+201\)

\(=\dfrac{200}{2}+201\)

\(=301\)

28 tháng 10

chán!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

14 tháng 1 2017

Số nào mũ 5 lên cũng có tận cùng là chính nó hết.

Ví dụ \(1^5=1,2^5=32,3^5=243\).

Trừ những số chia hết cho 10 thì mũ 5 lên có tận cùng là 0.

Đáp số: 5

14 tháng 1 2017

À nhầm đáp số là 0