Tìm a và b biết rằng phương trình ax2-2bx+3=0 có tập ngiệm S=(-2;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có :
pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)
pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)
pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)
\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*)
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)
trái với (*)
Vậy có ít nhất một phương trình có hai nghiệm phân biệt
cái kia chưa bt làm -_-
Theo đề, ta có hệ:
a*(-2)^2-2b*(-2)+3=0 và a-2b+3=0
=>4a+4b=-3 và a-2b=-3
=>a=-3/2; b=3/4
Lời giải:
Để PT đã cho nhận nghiệm $x=-2; x=1$ thì:
\(\left\{\begin{matrix} a(-2)^2-2b(-2)+3=0\\ a.1^2-2b.1+3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4a+4b=-3\\ a-2b=-3\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=\frac{-3}{2}\\ b=\frac{3}{4}\end{matrix}\right.\)
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)
Thay \(x=-2\) vào phương trình, ta có
\(a\left(-2\right)^2-2b\left(-2\right)+3=0\)
\(\Leftrightarrow4\left(a+b\right)=-3\)
\(\Leftrightarrow a+b=-\dfrac{3}{4}\) (1)
Thay \(x=1\) vào phương trình, ta có
\(a.1^2-2b.1+3=0\)
\(\Leftrightarrow a-2b=-3\) (2)
Trừ (2) cho (1) theo vế, ta được
\(-3b=-\dfrac{9}{4}\Rightarrow b=\dfrac{3}{4}\) \(\Rightarrow a=-\dfrac{3}{4}-\dfrac{3}{4}=-\dfrac{3}{2}\)
Vậy \(a=-\dfrac{3}{2}\) và \(b=\dfrac{3}{4}\)