Tìm 2 số tự nhiên sao cho tổng của chúng bằng 105 và tích của chúng bằng 2015?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tích của chúng=2015 nên sẽ có 1 số có tận cùng là 5
=>số còn lại có tận cùng là 0
=>tích có tận cùng là 0
=>mâu thuẫn với đề bài
=>không có 2 số nào thỏa mãn với đề bài
Giả sử 3 số tự nhiên đó lần lượt là a, b, c. Theo yêu cầu đề bài, ta có phương trình:
a + b + c = abc
Chia cả 2 vế của phương trình trên cho abc, ta có:
1/a + 1/b + 1/c = 1
Đây là phương trình Diophantus của bài toán. Chúng ta sẽ giải phương trình này bằng phương pháp thủ công như sau:
Ta có thể giả sử a ≤ b ≤ c (do tính chất giao hoán và kết hợp của phép nhân)
Trường hợp a = 1. Ta có 1/b + 1/c = 1, kết hợp với a ≤ b ≤ c, ta có b ≥ 2, c ≥ 3. Thử từng trường hợp b = 2, 3, ... ta sẽ tìm ra được 1 nghiệm là (1, 2, 3)
Trường hợp a = 2. Ta có 1/b + 1/c = 1/2. Kết hợp với a ≤ b ≤ c, ta có b ≥ 3, c ≥ 5. Thử từng trường hợp b = 3, 4, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Trường hợp a = 3. Ta có 1/b + 1/c = 2/9. Tương tự, ta có b ≥ 4, c ≥ 13. Thử từng trường hợp b = 4, 5, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Vậy nghiệm duy nhất của phương trình ban đầu là (1, 2, 3).