Bài 1: Chứng minh rằng: Tổng khoảng cách từ 1 điểm bất kì trong tam giác đều đến 3 cạnh của 1 tam giác không phụ thuộc vào vị trí điểm đó trong tam giác
Bài 2: Cho tam giác ABC, điểm M trong tam giác sao cho S tam giác AMB + S tam giác BMC= S tam giác MAC di chuyển trên đường nào?(a)
b) Các điểm I sao cho S AIC = S tam giác ABC di chuyển trên đường nào?
c) Các điểm O sao cho S ADC=2S ABC di chuyển trên đường nào?
Bài 3: Trong các hình chữ nhật có cùng S=100cm^2. Hình nào có chu vi nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dòng này tôi viết vì có việc nhé ko phải là tl linh tinh mong thông cảm và cũng ko phải là nội dung bài làm nhé.
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao \(AH\) const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\\ =\dfrac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\\ =\dfrac{1}{2}a\left(DM+ME+MF\right)\\ =\dfrac{1}{2}a.AH\\ \Rightarrow DM+ME+MF=AH\\ \RightarrowĐpcm\)
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao AH const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)
\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)
\(=\frac{1}{2}a\left(DM+ME+MF\right)\)
\(=\frac{1}{2}a.AH\)
\(=DM+ME+MF=AH\left(đpcm\right)\)