K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(\sqrt{1-x}\cdot\sqrt{1+x}=\sqrt{\left(1-x\right)\left(1+x\right)}=\sqrt{1-x+x-x^2}=\sqrt{1-x^2}\)

14 tháng 11 2023

1: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{x+3}>2\)

=>x+3>4

=>x>4-3=1

2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

3: ĐKXĐ: x>=0

\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)

=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)

=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)

=>\(-6\sqrt{x}+3=0\)

=>\(-6\sqrt{x}=-3\)

=>\(\sqrt{x}=\dfrac{1}{2}\)

=>x=1/4(nhận)

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

10 tháng 11 2021

\(ĐK:x\ge0;x\ne1;x\ne4\\ P=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\\ P=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{2\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-4}{3\sqrt{x}+3}\)

2 tháng 2 2021

Xem lại đề bạn nhé

12 tháng 9 2023

Ta bắt đầu bằng việc giả sử một giá trị ban đầu cho x, y và z, sau đó lặp lại quá trình tính toán cho đến khi đạt được độ chính xác mong muốn.

Ví dụ, giả sử ta chọn x = 1, y = 1 và z = 1 làm giá trị ban đầu. Sau đó, ta thực hiện các bước sau:

Bước 1: Tính toán giá trị mới cho x, y và z bằng cách sử dụng các phương trình đã cho: x_new = (2y - 1) / sqrt(y) y_new = (2z - 1) / sqrt(z) z_new = (2*x - 1) / sqrt(x)

Bước 2: Kiểm tra độ chính xác của giá trị mới so với giá trị cũ. Nếu đạt được độ chính xác mong muốn, ta dừng lại. Nếu không, ta lặp lại bước 1 với giá trị mới của x, y và z.

Tiếp tục lặp lại quá trình trên cho đến khi đạt được độ chính xác mong muốn. Khi đó, ta sẽ có giá trị x, y và z tương ứng là nghiệm của hệ phương trình đã cho.

14 tháng 9 2023

Cảm ơn bạn nha~~~