Cho a;b;c không âm . Chứng minh :
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{3}{a+b+c}\ge\dfrac{1}{\sqrt{ab+bc+ca}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Fix: Chuẩn hóa \(a+b+c=1\). Ta có BĐT
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{a+b+c}{2(ab+bc+ca)}+\dfrac{3}{a+b+c}\)
CM như sau: \(VT=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}+3\)
Và \(VP=\dfrac{\left(a+b+c\right)^2}{2(ab+bc+ca)}+3\)
Cần cm \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)\(\ge\dfrac{\left(a+b+c\right)^2}{2(ab+bc+ca)}\) (C-S dạng Engel)
*)Quay lại bài toán đầu:
\(\dfrac{1}{2(ab+bc+ca)}+6\ge\dfrac{1}{\sqrt{ab+bc+ac}}\)
Đặt \(\sqrt{ab+bc+ac}=t\ge0\)\(\Rightarrow\dfrac{1}{2t^2}+6\ge\dfrac{1}{t}\Leftrightarrow12t^2-6t+1\ge0\forall t\ge0\)