Cho đa thức M = 6 x6y + x4y3 – y7 – 4x4y3 + 10 – 5x6y + 2y7 – 2,5.
a) Thu gọn và tìm bậc của đa thức.
b) Tính giá trị của đa thức tại x = -1 và y = 1.
ai giúp mình với ạ:<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
ta có :
\(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3=-2x^4y^3+7xy^2\)
Bậc của M là \(4+3=7\)
tại x=1 và y=-1 ta có \(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2=2+7=9\)
M = (3x5y3 – 3x5y3) + (- 4x4y3 + 2x4y3) + 7xy2
= – 2x4y3 + 7xy2
– Bậc của đa thức M là 7
k cho mk nha
a, M = (3x5y3 – 3x5y3) + (- 4x4y3 + 2x4y3) + 7xy2 b, – Thay x = 1; y = -1 vào biểu thức, ta có:
|
a) \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(=-2x^4y^3+7xy^2\)
Đa thức M có bậc 7
b) Thay x=1 và y=-1 vào đa thức M=\(-2x^4y^3+7xy^2\) ta được
\(\left(-2\right)\times1^4\times\left(-1^3\right)+7\times1\times\left(-1^2\right)=-5\)
Vậy đa thức trên có giá trị bằng -5 tại x=1 và y=-1
T mk nha bạn ^...^
a)Theo đa thức ở đề bài
=>M=7xy2-2x4y3(vì các hạng tử có thể cộng trừ với nhau)
b)M=7*1*(-1)2-2*14*(-1)3=9
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức \(3\)
Hệ số cao nhất là \(1\)
\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)
Thay \(x=2\) vào \(B\left(x\right)\)
\(=2^4-2^3+2^2-11.2+10\\ =0\)
Vậy tại \(x=2\) thì \(B\left(x\right)=0\)
a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)
\(=x^6-x^5-2x^2-x+3\)
Bậc là 6
b) Thay x=-1 và y=2018 vào A, ta được:
\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)
\(=1-\left(-1\right)-2\cdot1+1+3\)
\(=1+1-2+1+3\)
=4
a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)
= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2
= 7x3 + 2x2y4 + 6y2
Bậc của đa thức là 6
Thay x = 1; y = -1 vào ta có:
7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15
b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)
\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)
\(=-3x^3y-6x^2y^5+8y^4\)
Bậc của đa thức là 7
Thay x = 1; y = -1 vào ta có:
(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
a: \(M=6x^6y+x^4y^3-y^7-4x^4y^3+10-5x^6y+2y^7-2.5\)
\(=x^6y-3x^4y^3+y^7+7.5\)
Bậc là 7
b: Thay x=-1 và y=1 vào M, ta được:
\(M=\left(-1\right)^6\cdot1-3\cdot\left(-1\right)^4\cdot1^3+1^7+7.5\)
\(=1-3+1+7.5\)
=6,5