cho tam giác ABC vuông tại A, đường cao AH. biết BH=8, tan B=1,875
a) giải tam giác vuông ABC
b) tính tỉ số lượng giác góc C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng:
\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=4\left(cm\right)\)
\(BC=BH+CH=10\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{CH.BC}=4\sqrt[]{5}\) (cm)
\(sinB=\dfrac{AC}{BC}=\dfrac{2\sqrt{5}}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)
\(tanB=\dfrac{AC}{AB}=2\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=2+8=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=2\cdot10=20\\AC^2=8\cdot10=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4\sqrt{5}}{10}=\dfrac{2\sqrt{5}}{5}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2\sqrt{5}}{10}=\dfrac{\sqrt{5}}{5}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{4\sqrt{5}}{2\sqrt{5}}=2\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{2\sqrt{5}}{4\sqrt{5}}=\dfrac{1}{2}\)
Lời giải:
a. $\widehat{C}=90^0-\widehat{B}=90^0-60^0=30^0$
$\frac{AB}{BC}=\cos B=\cos 60^0$
$\Rightarrow BC=\frac{AB}{\cos 60^0}=\frac{8}{\cos 60^0}=16$ (cm)
$AC=\sqrt{BC^2-AB^2}=\sqrt{16^2-8^2}=8\sqrt{3}$ (cm)
b.
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{8.8\sqrt{3}}{16}=4\sqrt{3}$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{8^2-(4\sqrt{3})^2}=4$ (cm) theo định lý Pitago
Theo tính chất tia phân giác:
$\frac{BD}{DC}=\frac{AB}{AC}=\frac{8}{8\sqrt{3}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{BD}{BC}=\frac{1}{1+\sqrt{3}}$
$\Rightarrow BD=\frac{BC}{1+\sqrt{3}}=\frac{16}{1+\sqrt{3}}=-8+8\sqrt{3}$ (cm)
$HD=BD-BH=-12+8\sqrt{3}$
$AD=\sqrt{AH^2+HD^2}=\sqrt{(4\sqrt{3})^2+(-12+8\sqrt{3})^2}=7,17$ (cm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: BC=10cm
AH=4,8cm
BH=3,6cm
c: DB/DC=AB/AC=6/8=3/4
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)
c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)
CH=BC-BH=12,8(cm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
BH=1,8(cm)
\(BC=\sqrt{3^2+4^2}=5\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)
\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)
\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)
\(\dfrac{BH}{HC}=\dfrac{1}{4}\Rightarrow CH=4BH\)
Áp dụng hệ thức lượng:
\(AH^2=BH.CH\)
\(\Leftrightarrow14^2=BH.4BH\)
\(\Rightarrow BH=7\)
\(\Rightarrow CH=4BH=28\)
Pitago tam giác ABH:
\(AB=\sqrt{BH^2+AH^2}=7\sqrt{5}\)
\(sinB=\dfrac{AH}{AB}=\dfrac{2\sqrt{5}}{5}\)
\(cosB=\dfrac{BH}{AB}=\dfrac{\sqrt{5}}{5}\)
\(tanB=\dfrac{AH}{BH}=2\)
\(cotB=\dfrac{1}{tanB}=\dfrac{1}{2}\)