K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

B A I C K

a) Xét ΔABI và ΔCKI có:

IA = IC (gt)

∠BIA = ∠KIC (đối đỉnh)

IB = IK (gt)

⇒ ΔABI = ΔCKI (c-g-c)

⇒ ∠BAI = ∠ICK ( cặp góc tương ứng). Mà ∠BAI là góc vuông nên ∠ICK cũng là góc vuông

Vậy IC \(\perp\) CK

b) Vì ΔABI = ΔCKI (c-g-c) nên AB = CK (cặp cạnh tương ứng)

Xét ΔABC và ΔCKA có:

AC: cạnh chung

∠BAI = ∠ACK (cmt)
AB = CK (cmt)

⇒ ΔABC = ΔCKA (c-g-c)

Vậy BC = AK ( cặp cạnh tương ứng)

Bài làm

a) Xét tam giác AIB và tam giác  CIK có:

AI = IC ( Do I là trung điểm AC )

\(\widehat{AIB}=\widehat{CIK}\)( Hai góc đối đỉnh )

BI = IK ( gt )

=> Tam giác AIB = tam giác CIK ( c.g.c )

=> \(\widehat{BAI}=\widehat{ICK}\left(=90^0\right)\)

=> IC vuông góc với CK.

b) Ta có: IC vuông góc với CK

=> AC vuông góc với CK

AC vuông góc với AB

=> CK // AB .

Xét tam giác AKB có: 

N là trung điểm AK 

I là tủng điể, BK

=> IN là đường trung bình.

=> IN // AB.

Xét tam giác BKC có:

I là trung điểm BK ( Do IB = IK )

M là trung điểm BC

=> IM là đường trung bình.

=> IM // CK

Mà AB // CK 

=> IM // IN 

Mà IM và IN trùng trung vì có chung I

=> M, I, N thẳng hàng. ( đpcm )

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
27 tháng 12 2021

Không vẽ hình cũng đc ạ

12 tháng 1 2023

a)       Xét \(\Delta BACvà\Delta NAMcó\)

                 \(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )

                 \(BA=NA\) ( gt )

                  \(CA=MA\) ( gt )

\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )

\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )

mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a

12 tháng 1 2023

bn chép bài mik ucche

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét tứ giác AKBC có

N là trung điểm của AB

N là trung điểm của KC

Do đó: AKBC là hình bình hành

Suy ra: AK=BC=2MC

24 tháng 2 2017

Cho tam giác ABC có góc A=60 độ. Dựng ra phía ngoài tam giác đó khác các tam giác đều ABM và ACN

a) C: M,N,A thẳng hàng

b) CM: BN=CM

c) Gọi O là giao điểm của BN và CM. Tính góc BOC

11 tháng 12 2021

Ta có: BD là phân giác ^ABC (gt).

=> 2^ABD = 2^DBC = ^ABC.

Mà ^ABC = 2^ACB (gt).

=> ^ABD = ^DBC = ^ACB.

Ta có: ^ABE = 180o - ^ABD.

          ^KCA = 180o - ^ACB.

Mà ^ABD = ^ACB (cmt).

=> ^ABE = ^KCA.

Xét tam giác ABE và tam giác KCA có:

+ ^ABE = ^KCA (cmt).

+ AB = KC (gt).

+ BE = CA (gt).

=> Tam giác ABE = Tam giác KCA (c - g - c).

=> AE = KA (2 cạnh tương ứng).