K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

EF=BC=8cm

\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-120^0=60^0\)

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?A. Δ ABC ∼ Δ DEFB. ABCˆ = EFDˆC. ACBˆ = ADFˆD. ACBˆ = DEFˆBài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:A. Δ RSK ∼ Δ PQMB. Δ RSK ∼ Δ MPQC. Δ RSK ∼ Δ QPMD. Δ RSK ∼ Δ QMPBài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thìA. RSKˆ = PQMˆB. RSKˆ = PMQˆC. RSKˆ = MPQˆD. RSKˆ = QPMˆBài 4: Chọn câu trả lời...
Đọc tiếp

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?

A. Δ ABC ∼ Δ DEF

B. ABCˆ = EFDˆ

C. ACBˆ = ADFˆ

D. ACBˆ = DEFˆ

Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:

A. Δ RSK ∼ Δ PQM

B. Δ RSK ∼ Δ MPQ

C. Δ RSK ∼ Δ QPM

D. Δ RSK ∼ Δ QMP

Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì

A. RSKˆ = PQMˆ

B. RSKˆ = PMQˆ

C. RSKˆ = MPQˆ

D. RSKˆ = QPMˆ

Bài 4: Chọn câu trả lời đúng?

A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF

C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF

D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?

A. 17,5         B. 18

C. 18,5       D. 19

II. Bài tập tự luận

Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:

a) Δ BAD ∼ Δ DBC

b) ABCD là hình thang

 
0

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+60^0=90^0\)

hay \(\widehat{C}=30^0\)

Vậy: \(\widehat{C}=30^0\)

a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)

mà cạnh đối diện với góc C là cạnh AB

và cạnh đối diện với góc B là cạnh AC

và cạnh đối diện với góc A là cạnh BC

nên AB<AC<BC(đpcm)

16 tháng 2 2021

Ta có\(\Delta ABC=\Delta DEF\)(1)

=> \(\hept{\begin{cases}AB=DE\\AC=DF\\BC=EF\end{cases}}\)(cạnh tương ứng) => EF = 8 cm 

Tư (1) => \(\widehat{A}=\widehat{D}\)(góc tương ứng)

Lại có trong \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^{\text{o}}\)

=> \(\widehat{A}+70^{\text{o}}+40^{\text{o}}=180^{\text{o}}\)

=> \(\widehat{A}=70^{\text{o}}\)

=> \(\widehat{D}=70^{\text{o}}\)

a: ΔABC đồng dạng vơi ΔDEF

=>\(\dfrac{C_{ABC}}{C_{DEF}}=k=\dfrac{2}{3}\)

b:AH/DI=k=2/3

13 tháng 5 2020

mọi người ơi ai bit lm hông chỉ tui zới

14 tháng 5 2020

A B C D E F 5 7 8 12 45 55

                               Giải

       Vì\(\Delta ABC~\Delta DEF\) nên ta có:

                \(\widehat{D}=\widehat{A}=45^o\)

               \(\widehat{E}=\widehat{B}=55^o\)

                \(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)

      Xét\(\Delta ABC~\Delta DEF\)  có:

  \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)

\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)

   \(DF=\frac{AC.3}{2}=10,5\)

 #hoktot<3# 

1:

ΔDEF=ΔMNP

=>DE=MN; EF=NP; DF=MP

EF+FD=10; NP-MP=2; DE=3

=>MN=3cm; EF-DF=2 và EF+FD=10

=>EF=(10+2)/2=6cm và DF=6-2=4cm

EF=NP=6cm; DF=MP=4cm

2:

a: ΔABC=ΔNMP

b: ΔABC=ΔPNM

2 tháng 9 2023

Bài 1

Do ∆DEF = ∆MNP

⇒ DE = MN; DF = MP; EF = NP

Do NP - MP = 2 (cm)

⇒ EF - FD = 2 (cm)

Lại có

EF + FD = 10 (cm)

⇒ EF = (10 + 2) : 2 = 6 (cm)

⇒ FD = 10 - 6 = 4 (cm)

Vậy độ dài các cạnh của mỗi tam giác là:

EF = NP = 6 cm

FD = MP = 4 cm

DE = MN = 3 cm