Trong kì thi Violympic có 17 hsg toán được mang số bao danh trong khoảng từ 1 đến 1000. Chứng tỏ rằng có thể chọn ra 9 học sinh thi toán có tổng các số ký danh được mang chia hết cho 9.( Dũng nguyên lí Đi-ric-le)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với 5 số tự nhiên đôi một khác nhau tùy ý thì có hai trường hợp xảy ra:
+ TH1: Có ít nhất 3 số chia cho 3 có số dư giống nhau =>Tổng ba số tương ứng chia hết cho 3.
+ TH2: Có nhiều nhất 2 số chia cho 3 có số dư giống nhau => Có ít nhất 1 số chia hết cho 3 , 1 số chia cho 3 dư 1, 1 số chia cho 3 dư 2
=> Luôn chọn được 3 số có tổng chia
hết cho 3.
Do đó ta chia 17 số là số báo danh của 17 học sinh thành 3 tập có lần lượt 5, 5, 7 phần tử.
Trong mỗi tập, chọn được 3 số có tổng lần lượt là \(3a_1,3a_2,3a_3\) (\(a_1,a_2,a_3\) ∈ N)
Còn lại 17 - 9 = 8 số, trong 8 số còn lại, chọn tiếp 3 số có tổng là \(3a_4\)
Còn lại 5 số chọn tiếp 3 số có tổng là \(3a_5\)
Trong 5 số \(a_1,a_2,a_3,a_4,a_5\) có 3 số \(a_1,a_2,a_3\) có tổng chia hết cho 3 .
Nên 9 học sinh tương ứng có tổng các số báo danh là \(3\left(a_1+a_2+a_3\right)⋮9\)
Gọi \(x\)là số học sinh cả 3 mốn Toán , Văn , Ngoại ngữ \(\left(x>0\right)\)
Ta có :
Số học sinh chỉ giỏi Toán là :
\(70-49-\left(32-x\right)\)
Số học sinh chỉ giỏi Văn là :
\(65-49-\left(34-x\right)\)
Số học sinh chỉ giỏi ngoại ngữ là :
\(62-34-\left(32-x\right)\)
Do có 6 học sinh không đạt yêu cầu 3 môn nên :
\(111-6=70-49-\left(32-x\right)+65-49-\left(34-x\right)+62-34-\left(32-x\right)+\left(34-x\right)\)
\(\Rightarrow82+x=105\Rightarrow x=23\)
Ta có: Muốn tìm số học sinh xếp đều nhau ta cần tìm ước chung của các số:
Số tìm được là: 96
Vậy mỗi hàng có 96 học sinh