K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

27 tháng 1 2022

\(F=\left(x+1\right)^2+\left(2x-1\right)^2=x^2+2x+1+4x^2-4x+1=5x^2-2x+2=\left(x\sqrt{5}\right)^2-2x\sqrt{5}.\dfrac{1}{\sqrt{5}}+\dfrac{1}{5}+\dfrac{9}{5}=\left(x\sqrt{5}+\dfrac{1}{\sqrt{5}}\right)^2+\dfrac{9}{5}\ge0\)- minF=\(\dfrac{9}{5}\)\(x\sqrt{5}+\dfrac{1}{\sqrt{5}}=0\)⇔x=\(\dfrac{-1}{5}\)

27 tháng 1 2022

\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\text{≥}-36\)  ∀x (vì \(\left(x^2+5x\right)^2\text{≥}0\))

MinE=-36 ⇔ \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

6 tháng 3 2021

/2x-7/>=0
/2x-6/>=0
/2x-5/>=0
suy ra /2x-7/+/2x-6/+/2x-5/>=0 
đề nó =0 thì 2x-7=0 hoặc 2x-6=0 hoặc 2x-5=0
x thuộc 7/2;3;5/2
vậy để c nhỏ nhất =0 khi và chỉ khi x thuộc những gt trên

6 tháng 3 2021

\(C=|7-2x|+|2x-6|+|2x-5|\ge7-2x+2x-5+0=2\text{ vì: }|a|\ge0\text{ và:}|a|\ge a\)

Vậy giá trị nhỏ nhất của biếu thức là: 2. Dấu bằng xảy ra khi: 2x-6=0 hay: x=3 thử lại đúng

5 tháng 10 2015

Áp dụng \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

\(A=\left(\left|2x+\frac{1}{5}\right|+\left|-2x-\frac{1}{7}\right|\right)+\left|2x+\frac{1}{6}\right|\ge\left|2x+\frac{1}{5}-2x-\frac{1}{7}\right|+0=\frac{2}{35}\)

Dấu "=" xảy ra khi x = -1/12

5 tháng 10 2015

Á ghi nhầm dấu + thành -. Sửa lại cho mình là x = -1/12 nhé !