Từ điểm A nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến AB với (O)( B là tiếp điểm). Lấy điểm
C thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
Chứng minh OA//CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBA và ΔOCA có
OB=OC
OA chung
BA=CA
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}\)
\(\Leftrightarrow\widehat{OCA}=90^0\)
hay AC\(\perp\)OC tại C
Xét (O) có
OC là bán kính
AC\(\perp\)OC tại C
Do đó: AC là tiếp tuyến của (O)
b: Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2)suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCE nội tiếp đường tròn
BE là đường kính
Do đó: ΔBCE vuông tại C
hay BC\(\perp\)CE(4)
Từ (3) và (4) suy ra CE//OA
a: Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó; ΔBCE vuông tại C
=>BC vuông góc với CE
AB=AC
OB=OC
=>AO là trung trực của BC
=>AO vuông góc với BC
=>AO//CE
a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)
Xét tam giác vuông ABC, đường cao BD ta có:
\(AB^2=AD.AC\) (Hệ thức lượng)
b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.
Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)
Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Hay AB = AE.
Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)
Vậy AE là tiếp tuyến của đường tròn (O)
c) Xét tam giác vuông OBA đường cao BH, ta có:
\(OB^2=OH.OA\) (Hệ thức lượng)
\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)
Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)
d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)
Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)
Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.
Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)
ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
DO đó:ΔBDC vuông tại D
Xét ΔBCA vuông tại B có BD là đường cao ứng với cạnh huyền AC
nên \(AB^2=AD\cdot AC\)
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>OBAC là tứ giác nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔCBD vuông tại B
=>CB\(\perp\)BD
Ta có:CB\(\perp\)BD
OA\(\perp\)BC
Do đó: OA//BD
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCE nội tiếp đường tròn
BE là đường kính
Do đó: ΔBCE vuông tại C
Suy ra: BC\(\perp\)CE(4)
từ (3) và (4) suy ra OA//CE