Cho x+y=2. Chứng minh rằng : x2017 + y2017 bé hơn hoặc bằng x2018 +y2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
a, Với mọi \(x;y\inℚ\)ta có :
\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)
\(\Rightarrow x+y\le|x|+|y|\)
\(-x-y\le|x|+|y|\)
\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)
\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)
Vậy \(|x+y|\le|x|+|y|\)
Dấu "=" xảy ra khi xy \(\ge\) 0.
Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.
Đặt \(m=x+y+z\) thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)
\(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)
\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1)
Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)
Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)
\(a)\)
\(\frac{x^2+y^2+5}{2}\ge x+2y\)
\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)
\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)
\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)
\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)
\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)
\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow x\ge y\)
Vậy với \(x\ge y\Rightarrowđpcm\)
Bạn giải thích bước (x-y)(\(^{x^{2017}-y^{2017}}\)) \(\ge\)0 đi, mk chưa hiểu lắm .