Cho các số a,b thỏa mãn điều kiện : a+b=1 , ab # 0. Tính giá trị của biểu thức :
A = \(\dfrac{a^2}{a^2-b^2-1}+\dfrac{b^2}{b^2-a^2-1}+\dfrac{1}{1-a^2-b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự và cộng lại:
\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)
\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)
\(\Rightarrow A\ge2+4+2=8\)
"=" khi \(a=b=1\)
Ta có :a+b=c+d
\(\Rightarrow\) a=c+d-b
Thay vào ab+1=cd
\(\Rightarrow\) (c+d-b)*b+1=cd
\(\Leftrightarrow\)cb+db-cd+1-b2=0
\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0
\(\Leftrightarrow\) (b-d)(c-b)=-1
Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 trường hợp
TH1: b-d=-1 và c-b=1
\(\Leftrightarrow\) d=b+1 và c=b+1
\(\Rightarrow\) c=d (1)
TH2: b-d=1 và c-b=-1
\(\Leftrightarrow\) d=b-1 và c=b-1
\(\Rightarrow\) c=d (2)
Vậy từ (1) và (2) ta có c=d.
a : b = ab
=> a = ab.b = ab^2
=> b^2 = 1 ( vì a,b khác 0 )
=> b=+-1
+, Nếu b=-1
Có : ab = a+b
=> -a = a+1
=> a=-1/2
=> T = 5/4
+, Nếu b = 1
Có : ab = a+b
=> a = a+1
=> ko tồn tại a t/m
Vậy T = 5/4
Tk mk nha
Lời giải:
Áp dụng BĐT AM-GM:
$P\leq \frac{ab}{2\sqrt{a^2b^2}}=\frac{ab}{2ab}=\frac{1}{2}$
Dấu "=" xảy ra khi $a=b$ (thay vào điều kiện $2b\leq ab+4\Leftrightarrow a^2+4\geq 2a$- cũng luôn đúng)