Tìm x; y biết:
a) \(\dfrac{x}{3}\) = \(\dfrac{y}{12}\) và x + y = 5
b) x : 2 = y : (-5) và x - y = -14
c) 13x = 7x và x + y = 40
d) \(\dfrac{4}{x}\) = \(\dfrac{5}{y}\) và x + y = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
(x-42) - 17 = 127
=> x - 42 = 127 + 17 = 144
=> x = 144 + 42 = 186
23(x+1) = 69
=> x + 1 = 69 : 23 = 3
x = 3 - 1 = 2
2x + 5 = 120 : 2 = 60
=> 2x = 60 - 5 = 55
x = 55 : 2 = 27,5
5x - 2 = 613
=> 5x = 613 + 2 = 615
x = 615 : 5 = 123
a)(x-42)-17=127
(x-42)=127+17
(x-42)=144
x=144+42
x=186
b)23(x+1)=69
(x+1)=69:23
(x+1)=3
x=3-1
x=2
c)2.x+5=120:2
2.x+5=60
2.x=60-5
2.x=55
x=55:2
x=27,5
d)5.x-2=613
5.x=613+2
5.x=615
x=615:5
x=123
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
4) Ta có: \(x\) ⋮ 13 vậy \(x\in B\left(13\right)\)
\(B\left(13\right)=\left\{0;13;26;39;52;65;78;91\right\}\)
Mà: \(20< x< 70\Rightarrow x\in\left\{26;39;52;65\right\}\)
5)
a) Ta có: \(\text{Ư}\left(32\right)=\left\{1;2;4;8;16;32\right\}\)
Vậy ước lớn hơn 4 và nhỏ hơn 17 của 32 là 8;16
b) Bạn viết lại đề
c) Ta có: x ⋮ 6 và 30 ⋮ x
Vậy x thuộc bội của 6 và ước của 30
Mà: \(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)
\(B\left(6\right)=\left\{0;6;12;18;24;30;36;42;...\right\}\)
\(\Rightarrow x\in\left\{6;30\right\}\)
Bài 3:
a) Đặt f(x)=0
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Đặt f(x)=0
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 3:
c) Đặt f(x)=0
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
d) Đặt f(x)=0
\(\Leftrightarrow x^4+2=0\)
\(\Leftrightarrow x^4=-2\)(Vô lý)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{x+y}{3+12}=\dfrac{5}{15}=\dfrac{1}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{1}{3}\\\dfrac{y}{12}=\dfrac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)
Vậy ...
b, \(x:2=y:\left(-5\right)\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Theo t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-14}{7}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{-5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=10\end{matrix}\right.\)
Vậy ...
c, \(13x=7x\Leftrightarrow\dfrac{13x}{91}=\dfrac{7x}{91}\)
\(\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{13}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=2\\\dfrac{y}{13}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)
Vậy ....
d, \(\dfrac{4}{x}=\dfrac{5}{y}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{5}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{36}{9}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=20\end{matrix}\right.\)
Vậy ..
a) ta có : \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{12}\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}-\dfrac{y}{12}=0\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-y=0\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\) vậy \(x=1;y=4\)
b) ta có : \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{-5}\\x-y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}+\dfrac{y}{5}=0\\x-y=-14\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x+2y=0\\2x-2y=-28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=-28\\x-y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=10\end{matrix}\right.\) vậy \(x=-4;y=10\)
c) ta có : \(\left\{{}\begin{matrix}13x=7y\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x-7y=0\\x+y=40\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x-7y=0\\7x+7y=280\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20x=280\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\) vậy \(x=14;y=26\)
) ta có : \(\left\{{}\begin{matrix}\dfrac{4}{x}=\dfrac{5}{y}\\x+y=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=4y\\x+y=36\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=0\\4x+4y=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9x=144\\x+y=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=20\end{matrix}\right.\) vậy \(x=16;y=20\)