Cho \(\Delta ABC\) vuoong tai A, tren canh BC lay diem M sao cho BM=MA, tia phan giac cua goc B cat AC o N
a/ Chung minh: a1/NA=NM
a2/NM\(\perp BC\)
a3/Goc \(BAM=C+MAC\)
b/\(\Delta ABC\) can co them dieu kien gi ve goc thi M la trung diem cua BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BAC}=180^0-80^0-40^0=60^0\)
\(\widehat{CAD}=\dfrac{60^0}{2}=30^0\)
=>\(\widehat{ADC}=180^0-30^0-40^0=110^0\)
b: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔBAN và ΔBMN có
BA=BM
\(\widehat{ABN}=\widehat{MBN}\)
BN chung
Do đo: ΔBAN=ΔBMN
Suy ra: NA=NM và \(\widehat{BAN}=\widehat{BMN}=90^0\)
=>NM\(\perp\)BC
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB
=>ΔABM đều
=>\(\widehat{ABC}=60^0\)