Cho biểu thức A= \(\dfrac{\left(x^2+y\right)\left(\dfrac{1}{4}+y\right)+x^2y^2+\dfrac{3}{4}\left(\dfrac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)
\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)
2.
\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)
\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)
\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
a)
\(\begin{array}{l}A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\\A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\\ = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {\dfrac{{ - 1}}{2} - 2 + 2} \right)\\ = - \dfrac{1}{2}\end{array}\)
Vậy \(A = - \dfrac{1}{2}\) không phụ thuộc vào biến x
b)
\(\begin{array}{l}B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\\B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\\B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 = - 10\end{array}\)
Vậy B = -10 không phụ thuộc vào biến x, y.
c)
\(\begin{array}{l}C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\\{\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\\C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\\C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\\C = 13\end{array}\)
Vậy C = 13 không phụ thuộc vào biến x
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
a: ĐKXĐ: \(x,y\in R\)
b: \(A=\dfrac{\dfrac{1}{4}x^2+x^2y+\dfrac{1}{4}y+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3}{4}y}{x^2y^2+1+x^2-x^2y-y+y^2}\)
\(=\dfrac{\dfrac{1}{4}x^2+x^2y+x^2y^2+y+\dfrac{1}{4}+y^2}{x^2y^2+x^2+1+y^2-x^2y-y}\)
\(=\dfrac{\dfrac{1}{4}\left(x^2+1\right)+y\left(x^2+1\right)+x^2y^2+y^2}{\left(y^2+1\right)\left(x^2+1\right)-y\left(x^2+1\right)}\)
\(=\dfrac{\left(x^2+1\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+y^2}{\left(x^2+1\right)\left(y^2-y+1\right)}\)
\(=\dfrac{\left(x^2+1\right)\left(y+\dfrac{1}{4}\right)+y^2\left(x^2+1\right)}{\left(x^2+1\right)\left(y^2-y+1\right)}=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
a)...........................
b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)
\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)
\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)
\(\Rightarrowđpcm\)
c) Bạn tự làm đi tới đây dễ rồi