Chứng minh rằng:với n thuộc N thì:
\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n-2}-2^{n+2}+3^n-2^n\)
=\(3^n:9-2^n.4+3^n-2^n\)
=\(\left(3^n:9+3^n\right)-\left(2^n.4+2^n\right)\)
=\(3^n\left(\frac{1}{9}+1\right)-2^n\left(4+1\right)\)
=\(3^n.\frac{10}{9}-2^n.5\)
=\(\frac{3^2.3^{n-2}.10}{9}-2^{n-1}.2.5\)
=\(3^{n-2}.10-2^{n-1}.10\)
=\(\left(3^{n-2}-2^{n-1}\right).10\)\(⋮10\)
=>.....(tự biết)
Ta có:
3n-2-2n-2+3n-2n=3n:32-2n.22+3n-2n=3n:9-2n.4+3n-2n(1)
*Giả sử: n=2 => (1)=9:9-4.4+9-4=1-16+9-4=-15+9-4=-10(vì -10 chia hết cho 10 nên n có thể = 2)(2)
*Giả sử: n=3 => (1)=27:9-8.4+27-8=3-32+27-8=-29+27-8=-2-8=-10(vì -10 chia hết cho 10 nên n có thể = 3)(3)
*Giả sử: n=4 => (1)=81:9-16.4+81-16=9-64+81-16=-55+81-16=26-16=10(vì 10 chia hết cho 10 nên n có thể = 4)(4)
Tiếp tục áp dụng quy luật trên, ta được:
Từ (2), (3), (4),... ta được: Mọi số nguyên dương n thì 3n-2-2n+2+3n-2n chia hết cho 10
\(S=3^{n+2}+3^n\text{-}2^{n+2}\text{-}2^n=3^n\left(3^2+1\right)\text{-}2^n\left(2^2+1\right)=3^n.10\text{-}2.2^{n\text{-}1}.5=3^n.10\text{-}2^{n\text{-}1}.10=10\left(3^n\text{-}2^{n\text{-}1}\right)=>ĐPCM\)
3n+2 - 2n+2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1) chia hết cho 10
=> 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 (Đpcm)
những bn nói truoc k bao gio thuc hiên, họ chỉ dụ bn gioi lam rui quen loi hua lien, tui bị lừa hoài
Ta có : 3n + 2 - 2n + 2 + 3n - 2n
<=> 3n + 2 - 2n + 2 + 3n - 2n = (3n + 2 + 3) - (2n + 2 + 2n)
=> 3n + 2 - 2n + 2 + 3n - 2n = 3n.(32 + 1) - 2n - 1.(23 + 2)
=> 3n + 2 - 2n + 2 + 3n - 2n = 3n . 10 - 2n - 1.10
=> 3n + 2 - 2n + 2 + 3n - 2n = 10.(3n - 2n - 1)
Mà 3n - 2n - 1 E N*
Nên 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10 cới mọi n e N*
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n.10-2^n.5\)
Ta thấy 3^n.10 và 2^n.5 đều chia hết cho 10
=> tổng trên chia hết cho 10 (đpcm)