Cho đường tròn (O)đường kính AB. Lấy điểm C thuộc đường tròn (O), với C không trùng A và B. Gọi I là trung điểm của đoạn AC. Vẽ tiếp tuyến của đường tròn (O) tại điểm C cắt tia OI tại D.
a) Chứng minh OI song song với BC.
b) Chứng minh DA là tiếp tuyến của đường tròn (O).
c) Vẽ CH vuông góc với AB, H ∈ AB và vẽ BK vuông góc với CD, K ∈ CD. Chứng minh CK2 = HA.HB
a: Ta có: ΔOAC cân tại O
mà OI là đường trung tuyến
nên OI là đường cao
=>OI//CB
b: Ta có: ΔOAC cân tại O
mà OI là đường cao
nên OI là phân giác của góc AOC
Xét ΔDAO và ΔDCO có
OA=OC
\(\widehat{AOD}=\widehat{COD}\)
OD chung
Do đó: ΔDAO=ΔDCO
SUy ra: \(\widehat{DAO}=\widehat{DCO}=90^0\)
=>DA là tiếp tuyến của (O)