Giá trị của \(x>0\) trong đẳng thức |0,6-4x|=4,2 là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :
|0,6-4x|=3,2
=>|0,6-4x|=+-3,2
TH1:
0,6-4x=3,2
4x = 0,6-3,2=-2,6
x = -2,6:4=-0,65
TH2:
0,6-4x=-3,2
4x = 0,6-(-3,2)=3,8
x = 3,8:4=0,95
Ma de bai cho gia tri x<0
Vay suy ra x=-0,95 ( thoa man de bai)
lik e nhe
Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13
1 ) ( x^2 + 1 )( x^2 + 5 ) = 0
=> x^2 + 1 = 0 hoặc x^2 + 5 = 0
=> x^2 = -1 hoặc x^2 = -5 ( loại vì x^2 >= 0 )
2) =>20x^2 - 4x + 20x - 20x^2 = 16
=> 16x = 16
=> x = 1
3) ( 100 -a )( 100- b ) = 10000 - 100b - 100a - ab
= 100 ( 100 -a - b ) - ab
=> x = -1
sai
đọc kĩ đề bài 1 đi
số giá trị của x!
vậy9 kết quả phải là 0 vì x ko có kết quả nào thõa mản dk trên
1 ) \(\left(x^2+1\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+1=0\\x^2+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=-1\\x^2=-5\end{array}\right.\) loại ( vì \(x^2\ge0\) )
Vậy không có giá trị nào thõa mãn .
2 ) \(4x\left(5x-1\right)+10x.\left(2-2x\right)=16\)
\(\Leftrightarrow20x^2-4x+20x-20x^2=16\)
\(\Leftrightarrow16x=16\)
\(\Leftrightarrow x=1\)
3 ) \(\left(100-a\right)\left(100-b\right)\)
\(=10000-100b-100a-ab\)
\(=100\left(100-a-b\right)-ab\)
\(\Rightarrow x=-1\)
=> 2x = 6
x = 6:2
x = 3
Mà 3 > 0 => không có giá trị x âm để 2x-0.4= 3.2
\(\Rightarrow\left|x-0,678\right|=1,678\\ \Rightarrow\left[{}\begin{matrix}x=1,678+0,678=2,356\\x=-1,678+0,678=-1\end{matrix}\right.\)
Ta có : \(5x^2+8xy+5y^2+4x-4y+8=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2+4x+4\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x+2\right)^2+\left(y-2\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2x+2y\right)^2=0\\\left(x+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=-2\\y=2\end{cases}}\) ( thỏa mãn )
Khi đó \(P=\left(-2+2\right)^{22}.\left(-2+1\right)^{12}+\left(2-1\right)^{2019}\)
\(=0+1=1\)
Vậy : \(P=1\) với x,y thỏa mãn đề.
ta được (4x^2+8xy+4y^2)+(x^2+4x+4)+(Y^2-4y+4)=0
(2x+2y)^2+(x+2)^2+(y-2)^2=0
(=)x=-2 và y=2
P=0-1+1=0
|0,6-4x|=4,2
<=> 0,6-4x=4,2 hoặc 0,6-4x=-4,2
<=>4x=-3,6 hoặc 4x=4,8
<=>x=-0,9 hoặc x=1,2
mà x>0 nên x=1,2