rút gọn B
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(1-\sqrt{x}\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{3+\sqrt{x}}\)
\(N=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=-3:\left(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)}\right)\)
\(=3.\left(\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)}\right)\)
ĐKXĐ: \(x\ne3;x\ne-3\)
Biểu thức = \(\frac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) =\(\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
=\(\frac{3\sqrt{x}}{\sqrt{x}-3}\)
b, tìm x thuộc Z để B thuộc Z
c, Tìm x thuộc R để B có giá trị nguyên
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
a) \(B=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{x-9}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(\Leftrightarrow B=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{x-9-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\frac{x-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{3}{\sqrt{x}+3}:\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow B=\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow B=\frac{3}{\sqrt{x}+2}\)
b) ??
a) \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\frac{2b}{a-b}\)
\(=\frac{a+b+2\sqrt{ab}}{2\left(a-b\right)}-\frac{a+b-2\sqrt{ab}}{2\left(a-b\right)}+\frac{4b}{2\left(a-b\right)}=\frac{a+b+2\sqrt{ab}-a-b+2\sqrt{ab}+4b}{2\left(a-b\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(a-b\right)}=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)}\)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{a-b}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{4\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)\(=\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
a) \(B=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
ĐKXĐ: \(x\ge0,x\ne1\)
\(B=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{2}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x+3}}\)
b) Để \(B=\frac{1}{2}\Rightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)\(\Rightarrow\sqrt{x}+3=4-10\sqrt{x}\Rightarrow11\sqrt{x}=1\Rightarrow\sqrt{x}=\frac{1}{12}\Rightarrow x=\frac{1}{121}\)(Thoả mãn ĐKXĐ)
Vậy x=1/121 thì B =1/2
a) biểu thức có nghĩa khi và chỉ khi: \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}+3\ne0\\\sqrt{x}-3\ne0\\x-9\ne0\end{cases}\Leftrightarrow x\ne9}\) và \(x\ge0\)
b) \(Q=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+3}\)
c) để Q < 1 thì:
\(\frac{3\sqrt{x}}{\sqrt{x}+3}< 1\)đkxđ: \(x\ge0\)
\(\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-3}{\sqrt{x}+3}< 0\)(1)
do \(\sqrt{x}+3>0\forall x\)
\(\Rightarrow\left(1\right)< 0\)khi và chỉ khi \(2\sqrt{x}-3< 0\)
\(\Leftrightarrow2\sqrt{x}< 3\Leftrightarrow\sqrt{x}< \frac{3}{2}\Leftrightarrow x< \frac{9}{4}\)
kết hợp với điều kiện ban đầu \(\Rightarrow Q< 1khi0\le x< \frac{9}{4}\)
a) \(ĐK:x\ge0,x\ne9\)
Với\(x\ge0,x\ne9\)thì \(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left[\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right]\)\(=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left[\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right]\)\(=\left[\frac{2x-6\sqrt{x}}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3\sqrt{x}+9}{x-9}\right]:\left[\frac{\sqrt{x}+1}{\sqrt{x}-3}\right]\)\(=\left[\frac{3x-6\sqrt{x}-9}{x-9}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(3\sqrt{x}-9\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)
b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
Mà \(\sqrt{x}+3>0\)nên \(4\sqrt{x}-6< 0\Leftrightarrow\sqrt{x}< \frac{3}{2}\Leftrightarrow x< \frac{9}{4}\)
Vậy với \(0\le x< \frac{9}{4}\)thì B < -1
c) \(B=\frac{4\sqrt{x}-6}{\sqrt{x}+3}=\frac{4\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=4-\frac{18}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\frac{18}{\sqrt{x}+3}\le6\Leftrightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Leftrightarrow4-\frac{18}{\sqrt{x}+3}\ge-2\)
Vậy \(MinB=-2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Nhìn nhầm câu c)
\(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)làm tương tự
Với \(x\ge0;x\ne9\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}=\frac{3x+9\sqrt{x}}{x-9}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)