K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho hình bình hành ABCD có góc \(A=60^o\), AD = 2AB. Gọi M là trung điểm của AD, N là trung điểm của BC. a. Chứng minh tứ giác MNCD là hình thoi b. Từ C kẻ đường thẳng vuông góc với MN tại E, cắt AB tại F. Chứbg minh E là trung điểm của CF c. Chứng minh DMCF đều d. Chứng minh ba điểm F, N, D thẳng hàng. Bài 2: Cho DABC vuông tại A, AB = 5cm, AC = 12cm, AM là trung tuyến. a. Tính độ dài BC, AM. b. Trên tia AM lấy điểm...
Đọc tiếp

Bài 1: Cho hình bình hành ABCD có góc \(A=60^o\), AD = 2AB. Gọi M là trung điểm của AD, N là trung điểm của BC.

a. Chứng minh tứ giác MNCD là hình thoi

b. Từ C kẻ đường thẳng vuông góc với MN tại E, cắt AB tại F. Chứbg minh E là trung điểm của CF

c. Chứng minh DMCF đều

d. Chứng minh ba điểm F, N, D thẳng hàng.

Bài 2: Cho DABC vuông tại A, AB = 5cm, AC = 12cm, AM là trung tuyến.

a. Tính độ dài BC, AM.

b. Trên tia AM lấy điểm D đối xứng với A qua M. Chứng minh AD = BC

c. Tam giác vuông ABC cần có thêm điều kiện gì thì ABDC là hình vuông.

Bài 3: Cho DABC có M, N lần lượt là trung điểm của AB, AC

a. Chứng minh BC = 2MN

b. Gọi K là điểm đối xứng của M qua N. Tứ giác BCKM là hình gì? Vì sao?

c. Tứ giác AKCM là hình gì? Vì sao?

d. Để tứ giác AKCM là hình chữ nhật thì DABC can có thêm điều kiện gì?

Bài 4: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Qua B vẽ đường thẳng song song với AC. Qua C vẽ đường thẳng song song với BD, chúng cắt nhau tại I.

a. Chứng minh OBIC là hình chữ nhật

b. Chứng minh AB = OI

c. Tìm điều kiện của hình thoi ABCD để tứ giác OBIC là hình vuông.

Bài 5: Cho DABC vuông tại A, phân giác BD. Gọi M, N, E lần lượt là trung điểm của BD, BC và DC.

a. Chứng minhMNED là hình bình hành

b. Chứng minh AMNE là hình thang can

c. Tìm điều kiện của DABC để MNED là hình thoi

Bài 6: Cho hình thang cân ABCD (AB // CD) có góc D=\(45^o\). Vẽ AH ^ CD tại H. Lấy điểm E đối xứng với D qua H.

a. Chứng minh tứ giác ABCE là hình bình hành

b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. Chứng minh H là trung điểm của AF

c. Tứ giác AEFD là hình gì? Vì sao?

4
15 tháng 12 2017

Ôn tập : Tứ giácÔn tập : Tứ giác

15 tháng 12 2017

Ôn tập : Tứ giácÔn tập : Tứ giácÔn tập : Tứ giác

a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc

từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )

Giải thích các bước giải:

Ta có tứ giác ABCD là hbh

=> AD=BC; AD//BC

Mà M và N là trung điểm của AD và BC

=> MD=NC

Xét tứ giác MNCD có ;

MD//NC

MD=NC

=> Tứ giác MNCD là hbh

Mà MD=CD=AD/2

=> Tứ giác MNCD là hình thoi

b) Ta có tứ giác MNCD là hình thoi

=> CD//MN

Xét ΔBFC có: EN//BF

N là trung điểm của BC

=> EN là đườngtrung bình của tam giác BFC

=> E là trung điểm của CF

c) Ta có tứ giác MNCD là hình thoi

=> CM là tia phân giác của gốc BCD

=> Góc BCA=Góc BCD/2=60/2=30

Xét tam giác BFC có NE//BF

                                 NE⊥FC

=> BF⊥FC

=> Góc BCF=90- góc FBC=90-góc BAD=30

=> Góc FCM=Góc FCB+ góc BCM=60

Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến

=> ΔMCF cân tại M

Mà góc MCF=60

=>ΔMCF đều

d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC

DM=DC(=AD/2) =>D∈trung trực của MC

Có NC=NM=> N∈trung trực của MC

=> F;N;D cùng thuộc trung trực của MC

=> F;N;D thẳng hàng

image

17 tháng 11 2017

mk ko bt a bởi vì mk ko bt lm

10 tháng 1 2018

d) gọi O là trung điểm của FB

nối O vs N

=> ON là đường trung bình của tam giác FBD và tam g BFC

=> ON // FC , ON // BD ( T/C đường trung bình )

=> FC // BD

tứ giác FBDC có FB // CD (vì AB // CD )

FC // BD (cmt)

=> FBDC là HBH (vì là tứ giác có các cạnh đối //)

=> FD giao BC tại trung điểm mỗi đường (t/c HBH)

mà N là trung điểm BC => N là trung điểm FD

=> N,F,D thẳng hàng

10 tháng 1 2018

a. Do ABCD là hình bình hành nên

• AB=CD

• AD=BC=> 1/2AD=1/2BC=> MD=NC • AD//BC

=> MD//NC

=> MNCD là hình bình hành

Ta có AD=2AB=> AD=2CD

=> CD=1/2AD=MD

Xét hbh MNCD: MD=CD

=> MNCD là hình thoi b.

Do MNCD là hình thoi => MN//CD Mà AB//CD

=> MN//AB Mà F thuộc AB, E thuộc MN

=> BF//NE Xét tam giác BFC có BN=NC, NE//BF

=> FE=EC => E là trung điểm FC

17 tháng 11 2017

cái này thì mk ko bt