Bài 1: Cho hình bình hành ABCD có góc \(A=60^o\), AD = 2AB. Gọi M là trung điểm của AD, N là trung điểm của BC.
a. Chứng minh tứ giác MNCD là hình thoi
b. Từ C kẻ đường thẳng vuông góc với MN tại E, cắt AB tại F. Chứbg minh E là trung điểm của CF
c. Chứng minh DMCF đều
d. Chứng minh ba điểm F, N, D thẳng hàng.
Bài 2: Cho DABC vuông tại A, AB = 5cm, AC = 12cm, AM là trung tuyến.
a. Tính độ dài BC, AM.
b. Trên tia AM lấy điểm D đối xứng với A qua M. Chứng minh AD = BC
c. Tam giác vuông ABC cần có thêm điều kiện gì thì ABDC là hình vuông.
Bài 3: Cho DABC có M, N lần lượt là trung điểm của AB, AC
a. Chứng minh BC = 2MN
b. Gọi K là điểm đối xứng của M qua N. Tứ giác BCKM là hình gì? Vì sao?
c. Tứ giác AKCM là hình gì? Vì sao?
d. Để tứ giác AKCM là hình chữ nhật thì DABC can có thêm điều kiện gì?
Bài 4: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo AC và BD. Qua B vẽ đường thẳng song song với AC. Qua C vẽ đường thẳng song song với BD, chúng cắt nhau tại I.
a. Chứng minh OBIC là hình chữ nhật
b. Chứng minh AB = OI
c. Tìm điều kiện của hình thoi ABCD để tứ giác OBIC là hình vuông.
Bài 5: Cho DABC vuông tại A, phân giác BD. Gọi M, N, E lần lượt là trung điểm của BD, BC và DC.
a. Chứng minhMNED là hình bình hành
b. Chứng minh AMNE là hình thang can
c. Tìm điều kiện của DABC để MNED là hình thoi
Bài 6: Cho hình thang cân ABCD (AB // CD) có góc D=\(45^o\). Vẽ AH ^ CD tại H. Lấy điểm E đối xứng với D qua H.
a. Chứng minh tứ giác ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. Chứng minh H là trung điểm của AF
c. Tứ giác AEFD là hình gì? Vì sao?