K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

mình hong bik làm

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `\Delta ABH` và `\Delta ACH`:

`\text {AB = AC}`

$\widehat {B} = \widehat {C}$

`\text {HB = HC (AH là đường trung tuyến)}`

`=> \Delta ABH = \Delta ACH (c-g-c)`

`b,`

Vì `\Delta ABH = \Delta ACH (a)`

`->` $\widehat {BAH} = \widehat {CAH} (\text {2 góc tương ứng})$

`-> \text {AH là đường phân giác của}` `\Delta ABC`.

loading...

10 tháng 5 2023

ròi AH là cạnh hay góc mà góc chung hay dữ v c :>.

29 tháng 5 2022

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

29 tháng 5 2022

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

17 tháng 9 2023

Xét hai tam giác ABD và ACD:

     AB = AC (tam giác ABC cân tại A);

     \(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);

     AD chung.

Vậy \(\Delta ABD = \Delta ACD\)(c.g.c).

Suy ra: BD = CD ( 2 cạnh tương ứng) hay D là trung điểm của cạnh BC. Vậy AD là đường trung tuyến của tam giác ABC.

17 tháng 9 2023

loading... Do ∆ABC cân tại A

⇒ AB = AC và ∠ABC = ∠ACB

⇒ ∠ABD = ∠ACD

Do AD là đường phân giác của ∠BAC

⇒ ∠BAD = ∠CAD

Xét ∆ABD và ∆ACD có:

∠BAD = ∠CAD (cmt)

AB = AC (cmt)

∠ABD = ∠ACD (cmt)

⇒ ∆ABD = ∆ACD (g-c-g)

⇒ BD = CD (hai cạnh tương ứng)

⇒ D là trung điểm của BC

Vậy AD là đường trung tuyến của ∆ABC