chứng minh rằng nếu x.x=y.z thì (x+y) / (x-y) = (x+z) / (z-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(x,y,z\in Q,x=\frac{a}{b},b>0,y=\frac{c}{d},d>0,z=\frac{h}{g},g>0.\)
a) Nếu \(x=y\), tức là \(\frac{a}{b}=\frac{c}{d}\), thì ta suy ra \(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\left(1\right)\)
Xét \(x+z=\frac{a}{b}+\frac{h}{g}=\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}\left(2\right)\)
Thay kết quả \(\left(1\right)\) vào vế phải của \(\left(2\right)\) ta được:
\(x+z=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{c}{d}+\frac{h}{g}\Rightarrow x+z=y+z\)
b) Ngược lại, nếu \(x+z=y+z,\) tức là \(\frac{a}{b}+\frac{h}{g}=\frac{c}{d}+\frac{h}{g},\) thì ta suy ra
\(\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}\)
\(\Rightarrow\frac{a.d.g+b.d.h}{b.d.g}=\frac{b.c.g+b.d.h}{b.d.g}\)
\(\Rightarrow a.d.g+b.d.h=b.c.g+b.d.h\left(3\right)\)
Theo luật đơn giản ước của phép cộng các số nguyên, từ đẳng thức \(\left(3\right)\) ta có: \(a.d.g=b.c.g\). Do đó:
\(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\)
Suy ra \(\frac{a}{b}=\frac{c}{d}\)
Ta có :
(+) \(x=y\)
\(\Rightarrow\begin{cases}x+z=x+z\\y+z=x+z\end{cases}\)
=> x+z=y+z
(+) x+z=y+z
\(\Rightarrow x+z-z=y+z-z\)
=> x = y
Ta có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\). Áp dụng tính chất dãy tỉ số bằng nhau
=>\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
=>\(\frac{x}{y}=2=>x=2y\)
Có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\left(x\ne y\ne z;x,y,z>0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
\(\Rightarrow\frac{x}{y}=2\Rightarrow x=2y\left(đpcm\right)\)
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn
Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)
Xét đẳng thức thứ nhất ta có :
\(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\) \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)
Biến đổi tương tự với đẳng thức thứ hai ta có :
\(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)
Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)
Do đó ta cần có :
\(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng
Do đó ta được : \(x^yy^x=y^z.z^y\)
Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)
=> Điều phải chứng minh