K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Áp dụng BĐT AM-GM ta có:

\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

\(\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ac}\)

\(=8abc=VP\)

Khi \(a=b=c\)

18 tháng 12 2017

BĐT\(\Leftrightarrow\)(a+b)+(b+c)+(c+a)\(\ge\)8abc

TA có BDT cô si

a+b\(\ge\)2\(\sqrt{ab}\)

\(\Rightarrow\)(a+b)(b+c)(a+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

Vậy (1-a)(1-b)(1-c)\(\ge\)8abc

NV
13 tháng 2 2020

\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)

\(VT\ge2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}=8abc\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Vì $A+B+C=1$ ta có:

$(1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)$

Áp dụng BĐT AM-GM cho các số dương:

$B+C\geq 2\sqrt{BC}; C+A\geq 2\sqrt{CA}; A+B\geq 2\sqrt{AB}$

$\Rightarrow (1-A)(1-B)(1-C)=(B+C)(C+A)(A+B)\geq 2\sqrt{BC}.2\sqrt{CA}.2\sqrt{AB}$

hay $(1-A)(1-B)(1-C)\geq 8ABC$ (đpcm)

Dấu "=" xảy ra khi $A=B=C=\frac{1}{3}$

18 tháng 7 2015

áp dụng bất đẳng thức cô-si với 2 số dương.

Ta có 

 \(a+b\ge2\sqrt{ab}\)

 \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)(vì a,b,c dương)

4 tháng 1 2021

Áp dụng BĐT AM-GM:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge2\sqrt{bc}.2\sqrt{ca}.2\sqrt{ab}=8abc\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

9 tháng 3 2019

a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

b ) Làm tương tự như a )

9 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)

cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)

b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)

CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

21 tháng 6 2018

vì a>0;b>0;c>0\(\Rightarrow\sqrt{a};\sqrt{b};\sqrt{c}\)luôn được xác định

\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\Rightarrow a-2\sqrt{ab}+b>=0\Rightarrow a+b>=2\sqrt{ab}\)

\(\left(\sqrt{b}-\sqrt{c}\right)^2>=0\Rightarrow b-2\sqrt{bc}+c>=0\Rightarrow b+c>=2\sqrt{bc}\)

\(\left(\sqrt{c}-\sqrt{a}\right)^2>=0\Rightarrow c-2\sqrt{ca}+a>=0\Rightarrow c+a>+2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>=2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)(đpcm)

dấu = xảy ra khi a=b=c

16 tháng 9 2019

Áp dụng ĐBT Cauchy - schwarz cho 2 số không âm, ta được:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}=8abc\left(đpcm\right)\)

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

21 tháng 4 2017

Đề phải cho \(a,b,c\) là các số dương nữa :)

Giải:

Áp dụng BĐT Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (Đpcm)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

27 tháng 5 2019

Bổ sung đk a,b,c > 0

BĐT \(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\) (đúng)

\(\Rightarrow\) Q.E.D

Dấu "=" xảy ra tại a =b =c 

4 tháng 1 2020

hack hay sao

4 tháng 1 2020

chứng minh ngắn là làm tắt