Bài 4:
Cho góc xOy (khác góc bẹt). Trên tia Ox lấy A. trên tia Oy lấy B sao cho OA= OB. Tia phân giác Oz của góc xOy cắt AB tại C
a) Chứng minh: tam giác AOC= tam giác BOC. Từ đó suy ra OC\(\perp\)AB
b) Trên tia đối của tia CO lấy điểm D sao cho CD= CO. Chứng minh: AD=BO; AD//BO
c) Gọi M là trung điểm của AD. N là trung điểm của OB. Chứng minh: M, C, N thẳng hàng
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đo: ΔOAC=ΔOBC
Ta có: ΔOAB cân tại O
mà OC là đường phân giác
nên OC là đườg cao
b: Xét tứ giác OADB có
C là trung điểm của OD
C là trung điểm của AB
Do đó: OADB là hình bình hành
Suy ra: OB//AD và OB=AD
c: Xét tứ giác BNAM có
BN//AM
BN=AM
Do đó: BNAM là hình bình hành
Suy ra: BA cắt NM tại trung điểm của mỗi đường
=>Clà trung điểm của MN